A Model for the Space–Time Spread of Pine Shoot Moth

  • Roberto Cominetti
  • Jaime San Martín
Part of the International Series In Operations Research amp; Mana book series (ISOR, volume 99)

We develop a diffusion-type model for the space–time spread of the pine shoot moth in the south of Chile. The model is stated as a discrete time evolution with non-overlapping generations and combines a drift term determined by the dominant winds with a filter term that accounts for the fact that the moth is specific to pine trees. We fit the model using the captures on pheromone traps on the two consecutive seasons 1991–1992 as well as the observed average spread of the plague during the period 1984–1999.


Northern Boundary Pheromone Trap Dominant Wind Time Spread Consecutive Season 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks R (1994) Growth and diffusion phenomena. Springer-Verlag TAM 14.Google Scholar
  2. Birch M, Haynes K (1982) Insect Pheromones. The Institute of Biology Studies in Biology 47, London.Google Scholar
  3. Daterman G (1974) Synthetic Sex Pheromones for Detection Survey of European Pine Shoot Moth. USDA Forest Service, Research Paper PNW-180.Google Scholar
  4. Kendall DG (1948) A form of wave propagation associated with the equation of heat conduction. Proceedings of the Cambridge Phil. Society 44:591-594.CrossRefGoogle Scholar
  5. Leibhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic pests: a threat to forest ecosystems. Forest Science Monograph 30.Google Scholar
  6. Long GE (1977) Spatial dispersion in a biological control model for larch casebearer. Environmental Entomology 6(6):843-852.Google Scholar
  7. Murray JD (2003) Mathematical Biology, Interdisciplinary Applied Mathematics, Vol. 18, Springer-Verlag, Heidelberg.Google Scholar
  8. Oksendal B (1992) Stochastic Differential Equations. Springer-Verlag, Heidelberg.Google Scholar
  9. Okubo A (1980) Diffusions and Ecological Problems: Mathematical Models. Springer-Verlag, Heidelberg.Google Scholar
  10. Polymenopoulos AD, Long G (1990) Estimation and evaluation methods for population growth models with spatial diffusion: dynamics of mountain pine beetle. Ecological Modelling 51:97-121.CrossRefGoogle Scholar
  11. Protter P (1990) Stochastic integration and differential equations. Applications of Mathematics, Vol. 21. Springer, Heidelberg.Google Scholar
  12. Robredo F (1970) Contribución al conocimiento de la bioecología de Rhyacionia buoliana Den. et Schiff y sus daños. Boletín del Servicio de plagas forestales XIII 26:181-186.Google Scholar
  13. Robredo F (1975) Contribución al conocimiento de la bilogía de Rhyacionia buoliana Den. et Schiff (Lepidoptera: Tortricidae) I. Estudio del adulto. Boletín del Servicio de Defensa contra plagas e Inspección Fitopatológica 1(1):69-81.Google Scholar
  14. Shoeder D (1986) Consultacy on the Biological Control of European Pine Shoot Moth, Rhyacionia buoliana in Chile, IICA.Google Scholar
  15. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196-218.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Roberto Cominetti
    • 1
  • Jaime San Martín
    • 1
  1. 1.Departamento de Ingeniería Matemática, Centro de Modelamiento MatemáticoUniversidad de ChileChile

Personalised recommendations