Skip to main content

Photobiomodulation by Low Power Laser Irradiation Involves Activation of Latent TGF-β1

  • Conference paper
Proceedings of Light-Activated Tissue Regeneration and Therapy Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 12))

Abstract

Laser mediated stimulation of biological process was amongst its very first effects documented by Mester et al. but the ambiguous and tissue-cell context specific biological effects of laser radiation is now termed ‘Photobiomodulation’. We found many parallels between the reported biological effects of lasers and a multiface-ted growth factor, Transforming Growth Factor-β (TGF-β). This review outlines the interestingparallelsbetween the twofieldsand our rationalefor pursuingtheir potential causal correlation. We explored this correlation using an in vitro assay systems and a human clinical trial on healing wound extraction sockets that we reported in a recent publication. In conclusion we report that low power laser irradiation can activate latent TGF-β1 and β3 complexes and suggest that this might be one of the major modes of the photobiomodulatory effects of low power lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arany, P.R., Flanders, K.C., Kobayashi, T., Kuo, C.K., Stuelten, C., Desai, K.V., Tuan, R., Rennard, S.I., and Roberts, A.B. (2006). Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure. Proceedings of the National Academy of Sciences of the United States of America 103, 9250–9255.

    Google Scholar 

  2. Arany, P.R., Nayak, R.S., Hallikerimath, S., Limaye, A.M., Kale, A.D., and Kondaiah, P. (2007). Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair and Regeneration 15, 866–874.

    Google Scholar 

  3. Barcellos-Hoff, M.H., and Dix, T.A. (1996). Redox-mediated activation of latent transforming growth factor-beta 1. Molecular endocrinology (Baltimore, MD) 10, 1077–1083.

    Google Scholar 

  4. Brown, P.D., Wakefield, L.M., Levinson, A.D., and Sporn, M.B. (1990). Physicochemical activation of recombinant latent transforming growth factor-beta's 1, 2, and 3. Growth factors (Chur, Switzerland) 3, 35–43.

    Google Scholar 

  5. Byrnes, K.R., Waynant, R.W., Ilev, I.K., Wu, X., Barna, L., Smith, K., Heckert, R., Gerst, H., and Anders, J.J. (2005). Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers in Surgery and Medicine 36, 171–185.

    Google Scholar 

  6. Chalazonitis, A., Kalberg, J., Twardzik, D.R., Morrison, R.S., and Kessler, J.A. (1992). Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Developmental Biology 152, 121–132.

    Google Scholar 

  7. Clark, R.A., McCoy, G.A., Folkvord, J.M., and McPherson, J.M. (1997). TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. Journal of Cellular Physiology 170, 69–80.

    Google Scholar 

  8. Desmouliere, A., Geinoz, A., Gabbiani, F., and Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibro-blasts and in quiescent and growing cultured fibroblasts. Journal of Cell Biology 122, 103–111.

    Google Scholar 

  9. Fu, X., Li, X., Cheng, B., Chen, W., and Sheng, Z. (2005). Engineered growth factors and cutaneous wound healing: success and possible questions in the past 10 years. Wound Repair and Regeneration 13, 122–130.

    Google Scholar 

  10. Garavello, I., Baranauskas, V., and da Cruz-Hofling, M.A. (2004). The effects of low laser irradiation on angiogenesis in injured rat tibiae. Histology and Histopathology 19, 43–48.

    Google Scholar 

  11. Ignotz, R.A., Endo, T., and Massague, J. (1987). Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. Journal of Biological Chemistry 262, 6443–6446.

    Google Scholar 

  12. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L. M., Hudson, J., Jr., Boguski, M.S., et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.

    Google Scholar 

  13. Jobling, M.F., Mott, J.D., Finnegan, M.T., Jurukovski, V., Erickson, A.C., Walian, P.J., Taylor, S.E., Ledbetter, S., Lawrence, C.M., Rifkin, D.B., et al. (2006). Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiation Research 166, 839–848.

    Google Scholar 

  14. Karu, T.I., and Kolyakov, S.F. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Surgery 23, 355–361.

    Google Scholar 

  15. Kojima, S., Nara, K., and Rifkin, D.B. (1993). Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells. Journal of Cell Biology 121, 439–448.

    Google Scholar 

  16. Kojima, S., and Rifkin, D.B. (1993). Mechanism of retinoid-induced activation of latent transforming growth factor-beta in bovine endothelial cells. Journal of Cellular Physiology 155, 323–332.

    Google Scholar 

  17. Latvala, T., Tervo, K., Mustonen, R., and Tervo, T. (1995). Expression of cellular fibronectin and tenascin in the rabbit cornea after excimer laser photorefractive keratectomy: a 12 month study. British Journal of Ophthalmology 79, 65–69.

    Google Scholar 

  18. Lavi, R., Sinyakov, M., Samuni, A., Shatz, S., Friedmann, H., Shainberg, A., Breitbart, H., and Lubart, R. (2004). ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures. Free Radical Research 38, 893–902.

    Google Scholar 

  19. Letterio, J.J. (2000). Murine models define the role of TGF-beta as a master regulator of immune cell function. Cytokine & Growth Factor Reviews 11, 81–87.

    Google Scholar 

  20. Lubart, R., Eichler, M., Lavi, R., Friedman, H., and Shainberg, A. (2005). Low-energy laser irradiation promotes cellular redox activity. Photomedicine and Laser Surgery 23, 3–9.

    Google Scholar 

  21. Lyons, R.M., Keski-Oja, J., and Moses, H.L. (1988). Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. Journal of Cell Biology 106, 1659–1665.

    Google Scholar 

  22. Massague, J., and Gomis, R.R. (2006). The logic of TGFbeta signaling. FEBS Letters 580, 2811–2820.

    Google Scholar 

  23. Mester, E., Nagylucskay, S., Tisza, S., Mester, A., Toth, J., and Laczy, F.I. (1977). [Current studies on the effect of laser beams on wound healing—immunologic effects]. Zeitschrift fur experimentelle Chirurgie 10, 301–306.

    Google Scholar 

  24. Miloro, M., and Repasky, M. (2000). Low-level laser effect on neurosensory recovery after sagittal ramus osteotomy. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 89, 12–18.

    Google Scholar 

  25. Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., Pittet, J.F., Kaminski, N., Garat, C., Matthay, M.A., et al. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328.

    Google Scholar 

  26. Nuccitelli, R. (2003). A role for endogenous electric fields in wound healing. Current Topics in Developmental Biology 58, 1–26.

    Google Scholar 

  27. Posten, W., Wrone, D.A., Dover, J.S., Arndt, K.A., Silapunt, S., and Alam, M. (2005). Low-level laser therapy for wound healing: mechanism and efficacy. Dermatologic Surgery 31, 334–340.

    Google Scholar 

  28. Pourreau-Schneider, N., Ahmed, A., Soudry, M., Jacquemier, J., Kopp, F., Franquin, J.C., and Martin, P.M. (1990). Helium-neon laser treatment transforms fibroblasts into myofibroblasts. American Journal of Pathology 137, 171–178.

    Google Scholar 

  29. Roberts, A.B., and Sporn, M.B. (1990). The Transforming Growth Factor-Betas. Vol. 1 (Heidelberg, Springer).

    Google Scholar 

  30. Roberts, A.B., and Wakefield, L.M. (2003). The two faces of transforming growth factor beta in carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 100, 8621–8623.

    Google Scholar 

  31. Skinner, S.M., Gage, J.P., Wilce, P.A., and Shaw, R.M. (1996). A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Australian Dental Journal 41, 188–192.

    Google Scholar 

  32. Smith, E.A., and LeRoy, E.C. (1990). A possible role for transforming growth factor-beta in systemic sclerosis. Journal of Investigative Dermatology 95, 125S–127S.

    Google Scholar 

  33. Souil, E., Capon, A., Mordon, S., Dinh-Xuan, A.T., Polla, B.S., and Bachelet, M. (2001). Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. British Journal of Dermatology 144, 260–266.

    Google Scholar 

  34. Tadakuma, T. (1993). Possible application of the laser in immunobiology. Keio Journal of Medicine 42, 180–182.

    Google Scholar 

  35. Takenaka, I.M., and Hightower, L.E. (1992). Transforming growth factor-beta 1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. Journal of Cellular Physiology 152, 568–577.

    Google Scholar 

  36. Toyokawa, H., Matsui, Y., Uhara, J., Tsuchiya, H., Teshima, S., Nakanishi, H., Kwon, A.H., Azuma, Y., Nagaoka, T., Ogawa, T., et al. (2003). Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Experimental Biology and Medicine (Maywood, NJ) 228, 724–729.

    Google Scholar 

  37. Wilden, L., and Karthein, R. (1998). Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. Journal of Clinical Laser Medicine & Surgery 16, 159–165.

    Google Scholar 

  38. Zamboni, W.A., Browder, L.K., and Martinez, J. (2003). Hyperbaric oxygen and wound healing. Clinics in Plastic Surgery 30, 67–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Arany, P.R. (2008). Photobiomodulation by Low Power Laser Irradiation Involves Activation of Latent TGF-β1. In: Waynant, R., Tata, D.B. (eds) Proceedings of Light-Activated Tissue Regeneration and Therapy Conference. Lecture Notes in Electrical Engineering, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71809-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71809-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71808-8

  • Online ISBN: 978-0-387-71809-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics