Skip to main content

RFID Indoor Tracking System Based on Inter-Tags Distance Measurements

  • Chapter
  • First Online:
Wireless Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 44))

Abstract

While in the near future everything will be tagged with Radio Frequency IDentification (RFID) tags, the localization of these tags in their environment is becoming an important feature for many RFID-based ubiquitous computing applications and robotics. Location-aware services in RFID system will allow offering value-added services to the RFID user, and RFID tags can be used for more than just labeling items.

This paper proposes an RSS-based positioning algorithm for objects attached with UHF RFID tags, by means of two mobile RFID antennas and landmarks to overcome the limitations of RFID technology and reduce the localization cost and environment complexity.

The proposed algorithm opens up a possibility for creating novel location-based applications using RFID technology, without specialized hardware or extensive training. It uses an RFID map made from passive or active reference tags (landmarks) to locate analytically any unknown tag detected by the RFID Reader antennas and improve statistically the overall accuracy of locating objects by defining the statistical distribution of the location estimation error for each landmark.

This algorithm is independent from the readers coordinates, and hence it can be more practical due to its mobility and its low cost to achieve a high deployment. To minimize the effect of the RSS and the process measurement noises on the position estimation, an adaptive Kalman filter and probabilistic map matching are applied.

Results obtained after conducting extensive simulations demonstrate the validity and suitability of the proposed positioning algorithm to provide high-performance level in terms of accuracy and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Finkenzeller, “RFID handbook: fundamentals and applications in contactless smart cards and identification” J. Wiley & Sons Ltd., New York, 2003.

    Google Scholar 

  2. J. Hightower and G. Borriello, “A Survey and Taxonomy of Location Sensing Systems for Ubiquitous Computing” IEEE Computer magazine, Vol. 34, No. 8, August 2001.

    Google Scholar 

  3. K. Pahlavan, L. Xinrong and J.P. Makela, “Indoor Geolocation Science and Technology”, IEEE Communication Magazine, Vol. 40, No. 2, 2002.

    Google Scholar 

  4. E. Kaplan, “Understanding GPS: Principles and Applications”, Artech House, Boston, 2005.

    Google Scholar 

  5. P. Bahl and V.N. Padmanabhan, “RADAR: An In-building RF-based User Location and Tracking System”, Proc. IEEE Infocom, vol. 2, pp. 775–784, 2000.

    Google Scholar 

  6. J.D. Griffin, G.D. Durgin, A. Haldi and B. Kippelen, ”Radio Link Budgets for 915 MHz RFID Antennas Placed on Various Objects”, in WCNC Wireless Symposium .05.

    Google Scholar 

  7. D.M. Dobkin and S.M. Weigand, “UHF RFID and Tag Antenna Scattering, Part I: Experimental Results and Part II: Tag Array Scattering Theory”, Microw. J. Theory Tech., 2006

    Google Scholar 

  8. P.R. Foster and R. Burberry, “Antenna problems in RFID systems, RFID Technology” IEE Colloquium RFID Tech., pp. 3/1–3/5, 1999.

    Google Scholar 

  9. T.S. Rappaport, “Wireless Communications: Principles and Practice”, Prentice-Hall Inc., New Jersey, 2003.

    Google Scholar 

  10. “EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860–960 MHz Version 1.0.9,” EPC Global, Tech. Rep., January 2005.

    Google Scholar 

  11. R. Glidden et al., “Design of ultra-low-cost UHF RFID tags for supply chain applications”, IEEE Communications Magazine, Vol. 42, No. 8, August 2004, pp. 140–151.

    Google Scholar 

  12. J.-P. Curty, N. Joehl, C. Dehollain and M.J. Declercq, “Design and Optimization of RFID system”, Springer, Berlin, 2007.

    Google Scholar 

  13. D. Kim, M.A. Ingram and W.W. Smith, “Measurements of Small-Scale Fading and Path Loss for Long Range RF Tags,” IEEE Trans. Antennas and Propagation, 51, 8, August 2003, 1740–1749.

    Google Scholar 

  14. J.G. Evans, R.A. Shober and S.A. Wilkus, “A Low-Cost Radio for an Electronic Price Label System” Bell Labs Tech. J., 22, 1996, 203–215.

    Google Scholar 

  15. K. Penttila, M. Keskilammi, L. Sydanheimo and M. Kivikoski, “Radar Cross-Section Analysis for Passive RFID Systems”, IEE Proc., Microw. Antennas Propag., 153, 1, 2006, 103–109.

    Article  Google Scholar 

  16. http://www.cs.unc.edu/welch/kalman/

  17. R.K. Mehra, “On the Identification of Variance and Adaptive Kalman Filtering” IEEE Trans. Automat, AC-15, 1970, 175–184.

    Google Scholar 

  18. http://www.mathworks.com/

  19. J. Devore and R. Peck, “Statistics: The Exploration and Analysis of Data”, Duxbury Press, CA, 3 edition, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmoula Bekkali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bekkali, A., Matsumoto, M. (2009). RFID Indoor Tracking System Based on Inter-Tags Distance Measurements. In: Powell, S., Shim, J. (eds) Wireless Technology. Lecture Notes in Electrical Engineering, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71787-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71787-6_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71786-9

  • Online ISBN: 978-0-387-71787-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics