Advertisement

Maximum-Likelihood Carrier-Frequency Synchronization and Channel Estimation for MIMO-OFDM Systems

  • Soheil Salari
  • Mahmoud Ahmadian
  • Mehrdad Ardebilipour
  • Vahid Meghdadi
  • Jean-Pierre Cances
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 44)

Abstract

In this chapter, we propose a new scheme for maximum-likelihood (ML) estimation of both carrier-frequency offset (CFO) and channel coefficients in multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, assuming that a training sequence is available. Our scheme is also capable to accommodate any space–time coded (STC)-OFDM transmission. Furthermore, the Cramer–Rao bounds (CRBs) for both CFO and channel estimators are developed to evaluate the performance of the proposed scheme. The simulation results show that the proposed algorithm achieves almost ideal performance compared with the CRB for both channel and frequency offset estimations.

Keywords

Orthogonal Frequency Division Multiplex Fading Channel Channel Estimation Cyclic Prefix Channel Impulse Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Wittneben, “A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation,” in Proc. IEEE Int. Communications Conf., Geneva, Switzerland, June 1993, pp. 1630–1634.Google Scholar
  2. 2.
    V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance analysis and code construction,” IEEE Trans. Inform. Theory, 44, 744–765, Mar. 1998.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    J. H. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Select. Areas Commun. , SAC–5, 871–878, June 1987.Google Scholar
  4. 4.
    G. J. Foschini, “Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., 22, 41–59, Autumn 1996.Google Scholar
  5. 5.
    G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., 6, 311–335, 1998.CrossRefGoogle Scholar
  6. 6.
    G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE J. Select. Areas Commun., 17, 1841–1852, Nov. 1999.CrossRefGoogle Scholar
  7. 7.
    G. L. Stuber, S. W. Mclaughlin, Y. Li, M. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM Wireless Communications”, IEEE Proc., 92, 2, 271–294, Feb. 2004.CrossRefGoogle Scholar
  8. 8.
    Y. Li, J. H. Winters, and N. R. Sollenberger, “MIMO-OFDM for wireless communications, signal detection with enhanced channel estimation”, IEEE Trans. Commun., 50, 9, 1471–1477, Sep. 2002.CrossRefGoogle Scholar
  9. 9.
    H. Bolckei, D. Gesbert, and A. Paulraj, “On the capacity of OFDM based spatial multiplexing systems”, IEEE Trans. Commun., 50, 225–234, Feb. 2002.CrossRefGoogle Scholar
  10. 10.
    M. Engels, Wireless OFDM Systems: How to make them work? Newton, MA: Kluwer Academic Publishers, 2002.Google Scholar
  11. 11.
    B. Lu, X. Wang and K. R. Narayanan, “LDPC-Based space-time coded OFDM systems over correlated fading channels: performance analysis and receiver design,” IEEE Transactions on Communication, 50, 1, 74–88, Jan 2002.CrossRefGoogle Scholar
  12. 12.
    X. Ma, M. K. Oh, G. B. Giannakis, and D. J. Park, “Hopping pilots for estimation of frequency-offset and multiantenna channels in MIMO-OFDM,” IEEE Trans. Commun., 53, 1, 162–172, 2005.CrossRefGoogle Scholar
  13. 13.
    T. C. W. Schenk and A. van Zelst, “Frequency synchronization for MIMO OFDM wireless LAN systems,” in Proceedings of the IEEE VTC, Orlando (FL), Oct. 2003, pp. 781–785.Google Scholar
  14. 14.
    P. Priotti, “Frequency synchronization of MIMO OFDM systems with frequency selective weighting,” in Proceedings of the IEEE VTC, 2004, 2, 1114–1118.Google Scholar
  15. 15.
    Y. Sun, Z. Xiong, and X. Wang, “EM-based iterative receiver design with carrier frequency offset estimation for MIMO OFDM systems,” IEEE Trans. Commun., vol. 53, no. 4, pp. 581–586, Apr. 2005.CrossRefGoogle Scholar
  16. 16.
    Z. J. Wang, Z. Han, and K. J. Ray Liu, “A MIMO-OFDM channel estimation approach using time of arrivals,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1207–1213, 2005.CrossRefGoogle Scholar
  17. 17.
    H. Minn, and N. Al-Dhahir, “Optimal training signals for MIMO-OFDM channel estimation,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 1158–1168, 2006.CrossRefGoogle Scholar
  18. 18.
    M. Morelli, and U. Mengali, “Carrier-frequency estimation for transmissions over selective channels”, IEEE Trans. Commun., vol. 48, no. 9, pp. 1580–1589,2000.CrossRefGoogle Scholar
  19. 19.
    X. Ma, H. Kobayashi, and S. C. Schwartz, “Joint frequency offset and channel estimation for OFDM”, Proc. IEEE Global Telecom. Conf., 2003, vol. 1, pp. 15–19.Google Scholar
  20. 20.
    T. Cui and C. Tellambura, “Robust joint frequency offset and channel estimation for OFDM systems”, Proc. IEEE VTC Conf., Los Angeles, CA, 004, vol. 1, pp. 603–607.Google Scholar
  21. 21.
    M. O. Pun, M. Morelli, and C. C. Jay Kuo, “Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions”, IEEE Trans. Commun., vol. 54, pp. 726–736, 2006.CrossRefGoogle Scholar
  22. 22.
    I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection”, IEEE Trans. Acoustic, Speech, Signal Process., vol. 36, no. 10, pp. 1553–1560, 1988.CrossRefMATHGoogle Scholar
  23. 23.
    G. J. McLachlan and T. Krishnan, The EM algorithm and extensions, John Wiley and Sons, New York, 2000.Google Scholar
  24. 24.
    T. Moon, “The expectation-maximization algorithm,”IEEE Signal Processing Magazine, vol. 13, pp. 47–60, 1996.CrossRefGoogle Scholar
  25. 25.
    C. N. Georghiades and J. C. Han, “Sequence estimation in the presence of random parameters via the EM algorithm,” IEEE Trans. Commun., vol. 45, no. 3, pp. 300–308, 1997.CrossRefGoogle Scholar
  26. 26.
    M. Feder and E. Weinstein, “Parameter estimation of superimposed signals using the EM Algorithm,”IEEE Trans. ASSP, vol. 36, no. 4, pp. 477–489,1998.CrossRefGoogle Scholar
  27. 27.
    S. A. Fechtel, “OFDM carrier and sampling frequency synchronization and its performance on stationary and mobile channels,” IEEE Trans. Consum. Electron, vol. 46, pp. 438–441, 2000.CrossRefGoogle Scholar
  28. 28.
    Y. Xie and C. N. Georghiades, “Two EM-type channel estimation algorithms for OFDM with transmitter diversity,” IEEE Trans. Commun., vol. 51, no.1, pp. 106–115, Jan. 2003.CrossRefGoogle Scholar
  29. 29.
    H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed., Springer-Verlag, New York, 1994.Google Scholar
  30. 30.
    P. Stoica and O. Besson, “Training sequence design for frequency offset and frequency selective channel estimation”IEEE Trans. Commun., vol. 51, pp. 1910–1917, Nov. 2003.CrossRefMathSciNetGoogle Scholar
  31. 31.
    C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Soheil Salari
    • 1
  • Mahmoud Ahmadian
    • 1
  • Mehrdad Ardebilipour
    • 1
  • Vahid Meghdadi
    • 2
  • Jean-Pierre Cances
    • 2
  1. 1.K. N. Toosi University of TechnologyTehranIran
  2. 2.University of Limoges, Ensil-GesteLimogesFrance

Personalised recommendations