Advertisement

Viral Heparin-Binding Complement Inhibitors – A Recurring Theme

  • Anna M. Blom
  • Linda Mark
  • O. Brad Spiller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)

Keywords

Herpes Simplex Virus Type Heparan Sulfate Hemolytic Uremic Syndrome Heparin Binding Complement Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akula, S.M., Pramod, N.P., Wang, F.Z., and Chandran, B. (2001) Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284, 235-49.PubMedCrossRefGoogle Scholar
  2. Albrecht, J.C., Nicholas, J., Biller, D., Cameron, K.R., Biesinger, B., Newman, C., Wittmann, S., Craxton, M.A., Coleman, H., and Fleckenstein, B. (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66s, 5047-58.PubMedGoogle Scholar
  3. Arnold, J.N., Dwek, R.A., Rudd, P.M., and Sim, R.B. (2006) Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett 106, 103-10.PubMedCrossRefGoogle Scholar
  4. Avrameas, S. (1991) Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today 12, 154-9.PubMedGoogle Scholar
  5. Bajtay, Z., Speth, C., Erdei, A., and Dierich, M.P. (2004) Cutting edge: productive HIV-1 infection of dendritic cells via complement receptor type 3 (CR3, CD11b/CD18) J Immunol 173, 4775-8.PubMedGoogle Scholar
  6. Banki, Z., Stoiber, H., and Dierich, M.P. (2005) HIV and human complement: inefficient virolysis and effective adherence. Immunol Lett 97, 209-14.PubMedCrossRefGoogle Scholar
  7. Blackmore, T.K., Hellwage, J., Sadlon, T.A., Higgs, N., Zipfel, P.F., Ward, H.M., and Gordon, D.L. (1998) Identification of the second heparin-binding domain in human complement factor H. J Immunol 160, 3342-8.PubMedGoogle Scholar
  8. Blom, A.M., Kask, L., and Dahlback, B. (2001) Structural requirements for the complement regulatory activities of C4BP. J Biol Chem 276, 27136-44.PubMedCrossRefGoogle Scholar
  9. Caprioli, J., Bettinaglio, P., Zipfel, P.F., Amadei, B., Daina, E., Gamba, S., Skerka, C., Marziliano, N., Remuzzi, G., and Noris, M. (2001) The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 12, 297-307. Notes: CORPORATE NAME: Itaslian Registry of Familial and Recurrent HUS/TTPPubMedGoogle Scholar
  10. Cesarman, E., Chang, Y., Moore, P.S., Said, J.W., and Knowles, D.M. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186-91.PubMedCrossRefGoogle Scholar
  11. Chen, Y.T., Wang, Y.H., Cheng, Y.Y., and Hung, S.L. (2003) Direct binding of herpes simplex virus type 1 virions to complement C3. Viral Immunol 16, 347-55.PubMedCrossRefGoogle Scholar
  12. Daniels, C.A., Borsos, T., Rapp, H.J., Snyderman, R., and Notkins, A.L. (1970) Neutralization of sensitized virus by purified components of complement. Proc Natl Acad Sci U S A 65, 528-35.PubMedCrossRefGoogle Scholar
  13. Eizuru, Y., Ueno, I., and Minamishima, Y. (1988) Evaluation of immunoglobulin G preparations for anti-cytomegalovirus antibodies with reference to neutralizing antibody in the presence of complement. J Clin Microbiol 26, 1881-3.PubMedGoogle Scholar
  14. Endo, Y., Takahashi, M., and Fujita, T. (2006) Lectin complement system and pattern recognition. Immunobiology 211, 283-93.PubMedCrossRefGoogle Scholar
  15. Fodor, W.L., Rollins, S.A., Bianco-Caron, S., Rother, R.P., Guilmette, E.R., Burton, W.V., Albrecht, J.C., Fleckenstein, B., and Squinto, S.P. (1995) The complement control protein homolog of herpesvirus saimiri regulates serum complement by inhibiting C3 convertase activity. J Virol 69, 3889-92.PubMedGoogle Scholar
  16. Friedman, H.M., Cohen, G.H., Eisenberg, R.J., Seidel, C.A., and Cines, D.B. (1984) Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309, 633-5.PubMedCrossRefGoogle Scholar
  17. Friedman, H.M., Glorioso, J.C., Cohen, G.H., Hastings, J.C., Harris, S.L., and Eisenberg, R.J. (1986) Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J Virol 60, 470-5.PubMedGoogle Scholar
  18. Friedman, H.M., Wang, L., Fishman, N.O., Lambris, J.D., Eisenberg, R.J., Cohen, G.H., and Lubinski, J. (1996) Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 70, 4253-60.PubMedGoogle Scholar
  19. Fries, L.F., Friedman, H.M., Cohen, G.H., Eisenberg, R.J., Hammer, C.H., and Frank, M.M. (1986) Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 137, 1636-41.PubMedGoogle Scholar
  20. Galili, U., Mandrell, R.E., Hamadeh, R.M., Shohet, S.B., and Griffiss, J.M. (1988a) Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 56, 1730-7.Google Scholar
  21. Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L., and Macher, B.A. (1988b) Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263, 17755-62.Google Scholar
  22. Ganesh, V.K., Smith, S.A., Kotwal, G.J., and Murthy, K.H. (2004) Structure of vaccinia complement protein in complex with heparin and potential implications for complement regulation. Proc Natl Acad Sci U S A 101, 8924-9.PubMedCrossRefGoogle Scholar
  23. Gerber, S.I., Belval, B.J., and Herold, B.C. (1995) Differences in the role of glycoprotein C of HSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virology 214, 29-39.PubMedCrossRefGoogle Scholar
  24. Ghebremariam, Y.T., Odunuga, O.O., Janse, K., and Kotwal, G.J. (2005) Humanized Recombinant Vaccinia Virus Complement Control Protein (hrVCP) with Three Amino Acid Changes, H98Y, E102K, and E120K Creating an Additional Putative Heparin Binding Site, Is 100-fold More Active Than rVCP in Blocking Both Classical and Alternative Complement Pathways. Ann N Y Acad Sci 1056, 113-22.PubMedCrossRefGoogle Scholar
  25. Goodfellow, I.G., Evans, D.J., Blom, A.M., Kerrigan, D., Miners, J.S., Morgan, B.P., and Spiller, O.B. (2005) Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J Virol 79, 12016-24.PubMedCrossRefGoogle Scholar
  26. Green, T.D., Montefiori, D.C., and Ross, T.M. (2003) Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d. J Virol 77, 2046-55.PubMedCrossRefGoogle Scholar
  27. Harris, C.L., Spiller, O.B., and Morgan, B.P. (2000) Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology 100, 462-70.PubMedCrossRefGoogle Scholar
  28. Harris, S.L., Frank, I., Yee, A., Cohen, G.H., Eisenberg, R.J., and Friedman, H.M. (1990) Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 162, 331-7.PubMedGoogle Scholar
  29. Herold, B.C., Visalli, R.J., Susmarski, N., Brandt, C.R., and Spear, P.G. (1994) Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75 ( Pt 6), 1211-22.PubMedGoogle Scholar
  30. Herold, B.C., WuDunn, D., Soltys, N., and Spear, P.G. (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65, 1090-8.PubMedGoogle Scholar
  31. Herzenberg, L.A. and Kantor, A.B. (1993) B-cell lineages exist in the mouse. Immunol Today 14, 79-83; discussion 88-90.PubMedCrossRefGoogle Scholar
  32. Hileman, R.E., Fromm, J.R., Weiler, J.M., and Linhardt, R.J. (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156-67.PubMedCrossRefGoogle Scholar
  33. Homa, F.L., Purifoy, D.J., Glorioso, J.C., and Levine, M. (1986) Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. J Virol 58, 281-9.PubMedGoogle Scholar
  34. Hook, L.M., Lubinski, J.M., Jiang, M., Pangburn, M.K., and Friedman, H.M. (2006) Herpes simplex virus type 1 and 2 glycoprotein C prevents complement-mediated neutralization induced by natural immunoglobulin M antibody. J Virol 80, 4038-46.PubMedCrossRefGoogle Scholar
  35. Huemer, H.P., Broker, M., Larcher, C., Lambris, J.D., and Dierich, M.P. (1989) The central segment of herpes simplex virus type 1 glycoprotein C (gC) is not involved in C3b binding: demonstration by using monoclonal antibodies and recombinant gC expressed in Escherichia coli. J Gen Virol 70 (Pt 6), 1571-8.PubMedGoogle Scholar
  36. Huemer, H.P., Larcher, C., and Coe, N.E. (1992) Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement. Virus Res 23, 271-80.PubMedCrossRefGoogle Scholar
  37. Huemer, H.P., Nowotny, N., Crabb, B.S., Meyer, H., and Hubert, P.H. (1995) gp13 (EHV-gC): a complement receptor induced by equine herpesviruses. Virus Res 37, 113-26.PubMedCrossRefGoogle Scholar
  38. Huemer, H.P., Wang, Y., Garred, P., Koistinen, V., and Oppermann, S. (1993) Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein. Immunology 79, 639-47.PubMedGoogle Scholar
  39. Huemer, H.P., Wechselberger, C., Bennett, A.M., Falke, D., and Harrington, L. (2003) Cloning and expression of the complement receptor glycoprotein C from Herpesvirus simiae (herpes B virus): protection from complement-mediated cell lysis. J Gen Virol 84, 1091-100.PubMedCrossRefGoogle Scholar
  40. Hung, S.L., Peng, C., Kostavasili, I., Friedman, H.M., Lambris, J.D., Eisenberg, R.J., and Cohen, G.H. (1994) The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway. Virology 203, 299-312.PubMedCrossRefGoogle Scholar
  41. Hung, S.L., Srinivasan, S., Friedman, H.M., Eisenberg, R.J., and Cohen, G.H. (1992) Structural basis of C3b binding by glycoprotein C of herpes simplex virus. J Virol 66, 4013-27.PubMedGoogle Scholar
  42. Isaacs, S.N., Kotwal, G.J., and Moss, B. (1992) Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A 89, 628-32.PubMedCrossRefGoogle Scholar
  43. Kapadia, S.B., Levine, B., Speck, S.H., and Virgin, H.W. 4th (2002) Critical role of complement and viral evasion of complement in acute, persistent, and latent gamma-herpesvirus infection. Immunity 17, 143-55.PubMedCrossRefGoogle Scholar
  44. Kapadia, S.B., Molina, H., van Berkel, V., Speck, S.H., and Virgin, H.W. 4th (1999) Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73, 7658-70.PubMedGoogle Scholar
  45. Kostavasili, I., Sahu, A., Friedman, H.M., Eisenberg, R.J., Cohen, G.H., and Lambris, J.D. (1997) Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J Immunol 158, 1763-71.PubMedGoogle Scholar
  46. Kotwal, G.J., Isaacs, S.N., McKenzie, R., Frank, M.M., and Moss, B. (1990) Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250, 827-30.PubMedCrossRefGoogle Scholar
  47. Kotwal, G.J. and Moss, B. (1988) Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335, 176-8.PubMedCrossRefGoogle Scholar
  48. Lewis, R.B., Matzke, D.S., Albrecht, T.B., and Pollard, R.B. (1986) Assessment of the presence of cytomegalovirus-neutralizing antibody by a plaque-reduction assay. Rev Infect Dis 8 Suppl 4, S434-8.Google Scholar
  49. Linhardt, R.J. (2003) 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem 46, 2551-64.PubMedCrossRefGoogle Scholar
  50. Liszewski, M.K., Leung, M.K., Hauhart, R., Buller, R.M., Bertram, P., Wang, X., Rosengard, A.M., Kotwal, G.J., and Atkinson, J.P. (2006) Structure and regulatory profile of the monkeypox inhibitor of complement: comparison to homologs in vaccinia and variola and evidence for dimer formation. J Immunol 176, 3725-34.PubMedGoogle Scholar
  51. Lubinski, J., Wang, L., Mastellos, D., Sahu, A., Lambris, J.D., and Friedman, H.M. (1999) In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J Exp Med 190, 1637-46.PubMedCrossRefGoogle Scholar
  52. Lubinski, J.M., Wang, L., Soulika, A.M., Burger, R., Wetsel, R.A., Colten, H., Cohen, G.H., Eisenberg, R.J., Lambris, J.D., and Friedman, H.M. (1998) Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J Virol 72, 8257-63.PubMedGoogle Scholar
  53. Maeda, K., Hayashi, S., Tanioka, Y., Matsumoto, Y., and Otsuka, H. (2002) Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC) Virus Res 84, 79-87.PubMedCrossRefGoogle Scholar
  54. Mardberg, K., Trybala, E., Glorioso, J.C., and Bergstrom, T. (2001) Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C. J Gen Virol 82, 1941-50.PubMedGoogle Scholar
  55. Mark, L., Lee, W.H., Spiller, O.B., Villoutreix, B.O., and Blom, A.M. (2006) The Kaposi’s sarcoma-associated herpesvirus complement control protein (KCP) binds to heparin and cell surfaces via positively charged amino acids in CCP1-2. Mol Immunol 43, 1665-75.PubMedCrossRefGoogle Scholar
  56. McGrath, Y., Wilkinson, G.W., Spiller, O.B., and Morgan, B.P. (1999) Development of adenovirus vectors encoding rat complement regulators for use in therapy in rodent models of inflammatory diseases. J Immunol 163, 6834-40.PubMedGoogle Scholar
  57. McKenzie, R., Kotwal, G.J., Moss, B., Hammer, C.H., and Frank, M.M. (1992) Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis 166, 1245-50.PubMedGoogle Scholar
  58. McNearney, T.A., Odell, C., Holers, V.M., Spear, P.G., and Atkinson, J.P. (1987) Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. J Exp Med 166, 1525-35.PubMedCrossRefGoogle Scholar
  59. Morgan, B.P., Marchbank, K.J., Longhi, M.P., Harris, C.L., and Gallimore, A.M. (2005) Complement: central to innate immunity and bridging to adaptive responses. Immunol Lett 97, 171-9.PubMedCrossRefGoogle Scholar
  60. Mullick, J., Bernet, J., Singh, A.K., Lambris, J.D., and Sahu, A. (2003). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) open reading frame 4 protein (kaposica) is a functional homolog of complement control proteins. J Virol 77, 3878-81.PubMedCrossRefGoogle Scholar
  61. Mullick, J., Singh, A.K., Panse, Y., Yadav, V., Bernet, J., and Sahu, A. (2005). Identification of functional domains in kaposica, the complement control protein homolog of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 79, 5850-6.PubMedCrossRefGoogle Scholar
  62. Murthy, K.H., Smith, S.A., Ganesh, V.K., Judge, K.W., Mullin, N., Barlow, P.N., Ogata, C.M., and Kotwal, G.J. (2001) Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans. Cell 104, 301-11.PubMedCrossRefGoogle Scholar
  63. Olofsson, S., Bolmstedt, A., Biller, M., Mardberg, K., Leckner, J., Malmstrom, B.G., Trybala, E., and Bergstrom, T. (1999) The role of a single N-linked glycosylation site for a functional epitope of herpes simplex virus type 1 envelope glycoprotein gC. Glycobiology 9, 73-81.PubMedCrossRefGoogle Scholar
  64. Oppermann, M., Manuelian, T., Jozsi, M., Brandt, E., Jokiranta, T.S., Heinen, S., Meri, S., Skerka, C., Gotze, O., and Zipfel, P.F. (2006) The C-terminus of complement regulator Factor H mediates target recognition: evidence for a compact conformation of the native protein. Clin Exp Immunol 144, 342-52.PubMedCrossRefGoogle Scholar
  65. Perez-Caballero, D., Gonzalez-Rubio, C., Gallardo, M.E., Vera, M., Lopez-Trascasa, M., Rodriguez de Cordoba, S., and Sanchez-Corral, P. (2001) Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 68, 478-84.PubMedCrossRefGoogle Scholar
  66. Petitou, M., Casu, B., and Lindahl, U. (2003) 1976-1983, a critical period in the history of heparin: the discovery of the antithrombin binding site. Biochimie 85, 83-9.PubMedCrossRefGoogle Scholar
  67. Pinter, C., Beltrami, S., Stoiber, H., Negri, D.R., Titti, F., and Clivio, A. (2000) Interference with complement regulatory molecules as a possible therapeutic strategy in HIV infection. Expert Opin Investig Drugs 9, 199-205.PubMedCrossRefGoogle Scholar
  68. Richards, A., Buddles, M.R., Donne, R.L., Kaplan, B.S., Kirk, E., Venning, M.C., Tielemans, C.L., Goodship, J.A., and Goodship, T.H. (2001) Factor H mutations in hemolytic uremic syndrome cluster in exons 18-20, a domain important for host cell recognition. Am J Hum Genet 68, 485-90.PubMedCrossRefGoogle Scholar
  69. Rioux, P. (2001) TP-10 (AVANT Immunotherapeutics) Curr Opin Investig Drugs 2, 364-71.PubMedGoogle Scholar
  70. Rooijakkers, S.H. and van Strijp, J.A. (2007) Bacterial complement evasion. Mol Immunol 44, 23-32.PubMedCrossRefGoogle Scholar
  71. Rosengard, A.M., Liu, Y., Nie, Z., and Jimenez, R. (2002) Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement. Proc Natl Acad Sci U S A 99, 8808-13.PubMedGoogle Scholar
  72. Rundell, B.B. and Betts, R.F. (1982) Neutralization and sensitization of cytomegalovirus by IgG antibody, anti-IgG antibody, and complement. J Med Virol 10, 109-18.PubMedCrossRefGoogle Scholar
  73. Russo, J.J., Bohenzky, R.A., Chien, M.C., Chen, J., Yan, M., Maddalena, D., Parry, J.P., Peruzzi, D., Edelman, I.S., Chang, Y., and Moore, P.S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8) Proc Natl Acad Sci U S A 93, 14862-7.PubMedCrossRefGoogle Scholar
  74. Saevarsdottir, S., Vikingsdottir, T., and Valdimarsson, H. (2004) The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 60, 23-9.PubMedCrossRefGoogle Scholar
  75. Sahu, A., Isaacs, S.N., Soulika, A.M., and Lambris, J.D. (1998) Interaction of vaccinia virus complement control protein with human complement proteins: factor I-mediated degradation of C3b to iC3b1 inactivates the alternative complement pathway. J Immunol 160, 5596-604.PubMedGoogle Scholar
  76. Seidel-Dugan, C., Ponce de Leon, M., Friedman, H.M., Eisenberg, R.J., and Cohen, G.H. (1990) Identification of C3b-binding regions on herpes simplex virus type 2 glycoprotein C. J Virol 64, 1897-906.PubMedGoogle Scholar
  77. Seidel-Dugan, C., Ponce de Leon, M., Friedman, H.M., Fries, L.F., Frank, M.M., Cohen, G.H., and Eisenberg, R.J. (1988) C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol 62, 4027-36.PubMedGoogle Scholar
  78. Sharma, A.K. and Pangburn, M.K. (1996) Identification of three physically and functionally distinct binding sites for C3b in human complement factor H by deletion mutagenesis. Proc Natl Acad Sci U S A 93, 10996-1001.PubMedCrossRefGoogle Scholar
  79. Singh, A.K., Mullick, J., Bernet, J., and Sahu, A. (2006) Functional characterization of the complement control protein homolog of herpesvirus saimiri: ARG-118 is critical for factor I cofactor activities. J Biol Chem 281, 23119-28.PubMedCrossRefGoogle Scholar
  80. Smith, S.A., Mullin, N.P., Parkinson, J., Shchelkunov, S.N., Totmenin, A.V., Loparev, V.N., Srisatjaluk, R., Reynolds, D.N., Keeling, K.L., Justus, D.E., Barlow, P.N., and Kotwal, G.J. (2000) Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: a novel mechanism for evasion of host defense. J Virol 74s, 5659-66.PubMedCrossRefGoogle Scholar
  81. Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d’Agay, M.F., Clauvel, J.P., Raphael, M., and Degos, L. (1995). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86, 1276-80.PubMedGoogle Scholar
  82. Spear, G.T., Lurain, N.S., Parker, C.J., Ghassemi, M., Payne, G.H., and Saifuddin, M. (1995) Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV) J Immunol 155, 4376-81.PubMedGoogle Scholar
  83. Spiller, O.B., Blackbourn, D.J., Mark, L., Proctor, D.G., and Blom, A.M. (2003) Functional activity of the complement regulator encoded by Kaposi’s sarcoma-associated herpesvirus. J Biol Chem 278, 9283-9.PubMedCrossRefGoogle Scholar
  84. Spiller, O.B., Hanna, S.M., Devine, D.V., and Tufaro, F. (1997) Neutralization of cytomegalovirus virions: the role of complement. J Infect Dis 176, 339-47.PubMedCrossRefGoogle Scholar
  85. Spiller, O.B., Mark, L., Blue, C.E., Proctor, D.G., Aitken, J.A., Blom, A.M., and Blackbourn, D.J. (2006) Dissecting the regions of virion-associated Kaposi’s sarcoma-associated herpesvirus complement control protein required for complement regulation and cell binding. J Virol 80, 4068-78.PubMedCrossRefGoogle Scholar
  86. Spiller, O.B. and Morgan, B.P. (1998) Antibody-independent activation of the classical complement pathway by cytomegalovirus-infected fibroblasts. J Infect Dis 178, 1597-603.PubMedCrossRefGoogle Scholar
  87. Spiller, O.B., Morgan, B.P., Tufaro, F., and Devine, D.V. (1996) Altered expression of host-encoded complement regulators on human cytomegalovirus-infected cells. Eur J Immunol 26, 1532-8.PubMedCrossRefGoogle Scholar
  88. Spiller, O.B., Robinson, M., O’Donnell, E., Milligan, S., Morgan, B.P., Davison, A.J., and Blackbourn, D.J. (2003) Complement regulation by Kaposi’s sarcoma-associated herpesvirus ORF4 protein. J Virol 77, 592-9.PubMedCrossRefGoogle Scholar
  89. Tal-Singer, R., Peng, C., Ponce De Leon, M., Abrams, W.R., Banfield, B.W., Tufaro, F., Cohen, G.H., and Eisenberg, R.J. (1995) Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 69, 4471-83.PubMedGoogle Scholar
  90. Tal-Singer, R., Seidel-Dugan, C., Fries, L., Huemer, H.P., Eisenberg, R.J., Cohen, G.H., and Friedman, H.M. (1991) Herpes simplex virus glycoprotein C is a receptor for complement component iC3b. J Infect Dis 164, 750-3.PubMedGoogle Scholar
  91. Thieblemont, N., Haeffner-Cavaillon, N., Ledur, A., L’Age-Stehr, J., Ziegler-Heitbrock, H.W., and Kazatchkine, M.D. (1993) CR1 (CD35) and CR3 (CD11b/CD18) mediate infection of human monocytes and monocytic cell lines with complement-opsonized HIV independently of CD4. Clin Exp Immunol 92, 106-13.PubMedCrossRefGoogle Scholar
  92. Trybala, E., Bergstrom, T., Svennerholm, B., Jeansson, S., Glorioso, J.C., and Olofsson, S. (1994) Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. J Gen Virol 75 ( Pt 4), 743-52.PubMedCrossRefGoogle Scholar
  93. Vanderplasschen, A., Mathew, E., Hollinshead, M., Sim, R.B., and Smith, G.L. (1998) Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc Natl Acad Sci U S A 95, 7544-9.PubMedCrossRefGoogle Scholar
  94. Walport, M.J. (2001) Complement. First of two parts. N Engl J Med 344, 1058-66.PubMedCrossRefGoogle Scholar
  95. Wang, F.Z., Akula, S.M., Pramod, N.P., Zeng, L., and Chandran, B. (2001) Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J Virol 75, 7517-27.PubMedCrossRefGoogle Scholar
  96. Watanabe, I., Ross, T.M., Tamura, S., Ichinohe, T., Ito, S., Takahashi, H., Sawa, H., Chiba, J., Kurata, T., Sata, T., and Hasegawa, H. (2003) Protection against influenza virus infection by intranasal administration of C3d-fused hemagglutinin. Vaccine 21, 4532-8.PubMedCrossRefGoogle Scholar
  97. Wu, C.T., Levine, M., Homa, F., Highlander, S.L., and Glorioso, J.C. (1990) Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody-resistant mutants. J Virol 64, 856-63.PubMedGoogle Scholar
  98. Yu, H., Munoz, E.M., Edens, R.E., and Linhardt, R.J. (2005) Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim Biophys Acta 1726, 168-76.PubMedGoogle Scholar
  99. Zipfel, P.F. (2001) Complement factor H: physiology and pathophysiology. Semin Thromb Hemost 27, 191-9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anna M. Blom
    • 1
  • Linda Mark
    • 1
  • O. Brad Spiller
    • 2
  1. 1.Department of Laboratory Medicine Malmö, The Wallenberg LaboratoryLund UniversitySweden
  2. 2.Department of Child HealthCardiff UniversityHeath ParkUnited Kingdom

Personalised recommendations