Systems Biology of Macrophages

  • Mano Ram Maurya
  • Christopher Benner
  • Sylvain Pradervand
  • Christopher Glass
  • Shankar Subramaniam
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


Cells and tissues function in context. Under a given growth or survival medium they perform tasks, replicate and die. Given a stimulus they respond by invoking myriad biomolecular networks that result in a specified cellular outcome. At any given instant it can be argued that the cell is in a “state” defined by its components – their concentrations and locations, the interactions between components – that are modulated in space and time, and the complex circuitry – that involves a large number of interacting networks and a snapshot of the dynamical processes – such as gene expression, cell cycle, transport of components, etc. At present, we can measure, using high and low throughput methods, several cellular components in a context-dependent manner and obtain a partial picture of cellular networks and dynamical processes. Are these measurements sufficient to answer important biological questions and help reconstruct a systems-level understanding of a mammalian cell? This chapter will address systems biology strategies developed to address this question and demonstrate the power of integration of diverse cellular data for answering interesting biological questions in macrophages. We will use this systems biology approach to address the following questions: (1) How good are macrophage cell lines in addressing phenotypic biology of primary macrophages? (2) How do signals associated with inflammatory molecules regulate gene transcription in macrophages? (3) How can we combine proteomic and other cellular measurements to characterize the repertoire of upstream signaling networks invoked by macrophages? (4) How do designed knockdowns of proteins influence cellular phenotypes?


Embryonic Stem System Biology Principal Component Regression Bone Marrow Derive Macrophage Primary Macrophage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beutler B, Hoebe K, Du X and Ulevitch RJ. (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol., 74(4):479-85.PubMedCrossRefGoogle Scholar
  2. Carafoli, E. (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A. 99(3): 1115-22.PubMedCrossRefGoogle Scholar
  3. De Young, G.W. and Keizer, J. (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration’, Proc Natl Acad Sci U S A. 89(20), pp. 9895-9.PubMedCrossRefGoogle Scholar
  4. Engelman JA, Zhang XL, Razani B, Pestell RG and Lisanti MP. (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem. 1999 Nov 5;274(45):32333-41.PubMedCrossRefGoogle Scholar
  5. Fink, C.C., Slepchenko, B., Moraru, II, Watras, J., Schaff, J.C. and Loew, L.M. (2000) An image-based model of calcium waves in differentiated neuroblastoma cells, Biophys J. 79(1), pp. 163-83.PubMedGoogle Scholar
  6. Frank PG and Lisanti MP. (2004) Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol. 15(5):523-9.PubMedCrossRefGoogle Scholar
  7. Galindo CL, Fadl AA, Sha J, Chopra AK. (2004) Microarray analysis of Aeromonas hydrophila cytotoxic enterotoxin-treated murine primary macrophages. Infect Immun. 72(9):5439-45.PubMedCrossRefGoogle Scholar
  8. Gill, D.L. and Chueh, S.H. (1985) An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line’, J Biol Chem. 260(16), pp. 9289-97.PubMedGoogle Scholar
  9. Gordon S. (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell. 111(7):927-30.PubMedCrossRefGoogle Scholar
  10. Haberichter, T., Marhl, M. and Heinrich, R. (2001) Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations, Biophys Chem. 90(1), pp. 17-30.PubMedCrossRefGoogle Scholar
  11. Hofer, T., Venance, L. and Giaume, C. (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach, J Neurosci. 22(12), pp. 4850-9.PubMedGoogle Scholar
  12. Hoffman, J.F., Linderman, J.J. and Omann, G.M. (1996) Receptor up-regulation, internalization, and interconverting receptor states. Critical components of a quantitative description of N-formyl peptide-receptor dynamics in the neutrophil, J Biol Chem. 271(31), pp. 18394-404.PubMedCrossRefGoogle Scholar
  13. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 10: 387-398.PubMedCrossRefGoogle Scholar
  14. Lee CH, Evans RM. (2002) Peroxisome proliferator-activated receptor-gamma in macrophage lipid homeostasis. Trends Endocrinol Metab. 13(8):331-5.PubMedCrossRefGoogle Scholar
  15. Lei MG, Morrison DC. (2000) Differential expression of caveolin-1 in lipopolysaccharide-activated murine macrophages. Infect Immun. 68(9):5084-9.PubMedCrossRefGoogle Scholar
  16. Lemon, G., Gibson, W.G. and Bennett, M.R. (2003) Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation, Journal of Theoretical Biology. 223(1), pp. 93-111.PubMedCrossRefGoogle Scholar
  17. Li, Y.X. and Rinzel, J. (1994) Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism, J Theor Biol. 166(4), pp. 461-73.PubMedCrossRefGoogle Scholar
  18. Linton MF, Fazio S. (2003) Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord. Suppl 3:S35-40.CrossRefGoogle Scholar
  19. Lucas AD, Greaves DR. (2001) Atherosclerosis: role of chemokines and macrophages. Expert Rev Mol Med. pp. 1-18.Google Scholar
  20. Lytton, J., Westlin, M., Burk, S.E., Shull, G.E. and MacLennan, D.H. (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps, J Biol Chem. 267(20), pp. 14483-9.PubMedGoogle Scholar
  21. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT (2003) Regulation of macrophage activation. Cell Mol Life Sci, 60, pp. 2334-46.PubMedCrossRefGoogle Scholar
  22. Marhl, M., Haberichter, T., Brumen, M. and Heinrich, R. (2000) Complex calcium oscillations and the role of mitochondria and cytosolic proteins’, Biosystems. 57(2), pp. 75-86PubMedCrossRefGoogle Scholar
  23. Matsuura M, Saito S, Hirai Y, Okamura H. (2003) A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem. 270(19):4016-25.PubMedCrossRefGoogle Scholar
  24. Maurya, M. R. and S. Subramaniam (2007a). A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 1. Mechanisms, Parameters and Sub-populational Variability. Biophysical Journal, In print, Vol. 93, August.Google Scholar
  25. Maurya, M. R. and S. Subramaniam (2007b). A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 2. Knockdown Response and Long-Term Response. Biophysical Journal, In print, Vol. 93, August.Google Scholar
  26. Meir KS, Leitersdorf E. (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 24(6):1006-14.PubMedCrossRefGoogle Scholar
  27. Nicholson AC. (2004) Expression of CD36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc Med. 14(1):8-12.PubMedCrossRefGoogle Scholar
  28. Oppenheim JJ, Feldman M, Durum SK, Hirano T, Vilcek J, et al., editors (2000) Cytokine reference: A compendium of cytokines and other mediators of host defense. 1st ed. San Diego: Academic Press.Google Scholar
  29. Oppenheim JJ, Feldmann M (2000) Introduction to the Role of Cytokines in Innate Host Defense and Adaptive Immunity. In: Oppenheim JJ, Feldman M, Durum SK, Hirano T, Vilcek J et al., editors. Cytokine reference: A compendium of cytokines and other mediators of host defense. 1st ed. San Diego: Academic Press. pp. 3-20.Google Scholar
  30. Ozato K, Tsujimura H, Tamura T (2002) Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques Suppl: 66-68, 70, 72 passim.Google Scholar
  31. Palsson-McDermott, E. M. and L. A. O’Neill (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113(2): 153-62.PubMedCrossRefGoogle Scholar
  32. Papin, J.A., Hunter, T., Palsson, B.O. and Subramaniam, S. (2005) Reconstruction of cellular signalling networks and analysis of their properties, Nat Rev Mol Cell Biol. 6(2), pp. 99-111.PubMedCrossRefGoogle Scholar
  33. Pasparakis M, Alexopoulou L, Douni E, Kollias G (1996) Tumour necrosis factors in immune regulation: everything that’s interesting! Cytokine Growth Factor Rev 7: 223-229.PubMedCrossRefGoogle Scholar
  34. Plutzky J. (2003) The vascular biology of atherosclerosis. Am J Med. 115 Suppl 8A:55S-61S.Google Scholar
  35. Pradervand, S., Maurya, M.R. and Subramaniam, S. (2006) Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages, Genome Biol. 7(2), pp. R11.1-R11.14.CrossRefGoogle Scholar
  36. Raschke WC, Baird S, Ralph P, Nakoinz I. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 15(1):261-7.PubMedCrossRefGoogle Scholar
  37. Riccobene, T.A., Omann, G.M. and Linderman, J.J. (1999) Modeling activation and desensitization of G-protein coupled receptors - Provides insight into ligand efficacy, Journal of Theoretical Biology. 200(2), pp. 207-222.PubMedCrossRefGoogle Scholar
  38. Schuster, S., Marhl, M. and Hofer, T. (2002) ‘Modeling of simple and complex calcium oscillations, from single-cell responses to intercellular signaling’, Eur. J. Biochem. 269, pp. 1333-1355.PubMedCrossRefGoogle Scholar
  39. Shaw G, Kamen R (1986) A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659-667.PubMedCrossRefGoogle Scholar
  40. Shore SK, Tantravahi RV, Reddy EP. (2002) Transforming pathways activated by the v-Abl tyrosine kinase. Oncogene. 21(56):8568-76.PubMedCrossRefGoogle Scholar
  41. Sitaramayya, A. and Bunnett, N.W. (1999) Cell surface receptors: Mechanisms of signaling and activation, in Introduction to Cellular Signal Transduction, (Birkhauser, Boston, MA, USA), pp. 7-28.Google Scholar
  42. Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H. (2004) Production and Release of Macrophage Migration Inhibitory Factor from Human Adipocytes. Endocrinology. 146(3):1006-11.PubMedCrossRefGoogle Scholar
  43. Taylor PR, Brown GD, Herre J, Williams DL, Willment JA, Gordon S. (2004) The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J Immunol. 172(2):1157-62.PubMedGoogle Scholar
  44. Valledor AF, Borras FE, Cullell-Young M, Celada A. (1998) Transcription factors that regulate monocyte/macrophage differentiation. J Leukoc Biol. 63(4):405-17.PubMedGoogle Scholar
  45. Werb Z, Chin JR. (1983) Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes. J Cell Biol. 97(4):1113-8.PubMedCrossRefGoogle Scholar
  46. Wiesner, T.F., Berk, B.C. and Nerem, R.M. (1996) A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, American Journal of Physiology-Cell Physiology. 39(5), pp. C1556-C1569Google Scholar
  47. Woolf, P.J. and Linderman, J.J. (2003) Untangling ligand induced activation and desensitization of G-protein-coupled receptors’, Biophys J. 84(1), pp. 3-13.PubMedCrossRefGoogle Scholar
  48. Yi, T.M., Kitano, H. and Simon, M.I. (2003) A quantitative characterization of the yeast heterotrimeric G protein cycle’, Proc Natl Acad Sci USA, 100(19), pp. 10764-10769.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mano Ram Maurya
    • 1
  • Christopher Benner
    • 2
  • Sylvain Pradervand
    • 1
  • Christopher Glass
    • 2
    • 3
  • Shankar Subramaniam
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of California at San DiegoLa Jolla
  2. 2.Graduate Program in Bioinformatics and Systems BiologyUniversity of California at San DiegoLa Jolla
  3. 3.Department of Cellular and Molecular MedicineUniversity of California at San DiegoLa Jolla

Personalised recommendations