Biological Roles of Lectins in Innate Immunity: Molecular and Structural Basis for Diversity in Self/Non-Self Recognition

  • Gerardo R. Vasta
  • Hafiz Ahmed
  • Satoshi Tasumi
  • Eric W. Odom
  • Keiko Saito
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


Innate Immunity Adaptive Immunity Innate Immune Receptor Lectin Family Ectothermic Vertebrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides, P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George, R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton, G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., Brandon, R.C., Rogers Y.H., Blazej R.G., Champe M., Pfeiffer B.D., Wan K.H., Doyle, C., Baxter E.G., Helt G., Nelson C.R., . Gabor, G.L., Abril J.F., Agbayani A., An H.J., Andrews-Pfannkoch, C., Baldwin, D., Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley, E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov, S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier, P., Burtis K.C., Busam D.A., Butler H., Cadieu E., Center, A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies, P., de Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz, S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha, S., Dunkov, B.C., Dunn P., Durbin K.J., Evangelista C.C., Ferraz C., Ferriera S., Fleischmann, W., Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser, K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris, M., Harris N.L., Harvey D., Heiman T.J., Hernandez J.R., Houck J., Hostin, D., Houston K.A., Howland T.J., Wei M.H., Ibegwamm C., Jalali, M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum K.A., Kimmel, B.E., Kodira C.D., Kraft C., Kravitz S., Kulp D., Lai Z., Lasko P., Lei, Y., Levitsky A.A., J., L., Z., L., Liang Y., Lin X., Liu X., Mattei, B., McIntosh T.C., McLeod M.P., McPherson D., G., M., V., M.N., C., M., J., M., Moshrefi A., Mount S.M., Moy M., Murphy B., Murphy L., Muzny, D.M., Nelson D.L., Nelson D.R., Nelson K.A., Nixon K., Nusskern, D.R., Pacleb J.M., Palazzolo M., Pittman, G.S., Pan S., Pollard J., Puri V., Reese M.G., Reinert K., Remington, K., Saunders R.D., Scheeler F., Shen H., Shue B.C., Siden-Kiamos, I., Simpson M., Skupski M.P., Smith T., Spier E., Spradling, A.C., Stapleton M., Strong R., Sun E., Svirskas R., Tector, C., Turner R., Venter E., Wang A.H., Wang X., Wang Z.Y., Wassarman, D.A., Weinstock G.M., Weissenbach J., Williams S.M., Woodage T., Worley, K.C., Wu D., Yang S., Yao Q.A., Ye J., Yeh R.F., Zaveri J.S., Zhan, M., Zhang G., Zhao Q., Zheng L., Zheng X.H., Zhong F.N., Zhong W., Zhou, X., Zhu S., Zhu X., Smith H.O., Gibbs R.A., Myers E.W., Rubin, G.M. and Venter J.C. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.PubMedCrossRefGoogle Scholar
  2. Adema, C.M., Hertel L.A., Miller R.D. and Loker E.S. (1997) A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc. Natl. Acad. Sci. U S A 94, 8691-8696.PubMedCrossRefGoogle Scholar
  3. Ahmed, H., Du S.J., O’Leary, N. and Vasta G.R. (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14, 219-232.PubMedCrossRefGoogle Scholar
  4. Akira, S., Takeda K. and Kaisho T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680.PubMedCrossRefGoogle Scholar
  5. Azumi, K., De Santis R., De Tomaso A., Rigoutsos I., Yoshizaki F., Pinto, M.R., Marino R., Shida K., Ikeda M., Ikeda M., Arai M., Inoue, Y., Shimizu T., Satoh N., Rokhsar D.S., Du Pasquier L., Kasahara M., Satake, M. and Nonaka M. (2003) Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55, 570-581.PubMedCrossRefGoogle Scholar
  6. Barrionuevo, P., Beigier-Bompadre, M., Ilarregui J.M., Toscano M.A., Bianco, G.A., Isturiz M.A. and Rabinovich G.A. (2007) A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 178, 436-445.PubMedGoogle Scholar
  7. Baum, L.G., Blackall D.P., Arias-Magallano, S., Nanigian D., Uh S.Y., Browne, J.M., Hoffmann D., Emmanouilides C.E., Territo M.C. and Baldwin, G.C. (2003) Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109, 295-307.PubMedCrossRefGoogle Scholar
  8. Becker, D.J. and Lowe J.B. (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R-53R.PubMedCrossRefGoogle Scholar
  9. Bianchet, M.A., Odom E.W., Vasta G.R. and Amzel L.M. (2002) A novel fucose recognition fold involved in innate immunity. Nat. Struct. Biol. 9, 628-634.PubMedGoogle Scholar
  10. Bottazzi, B., Garlanda C., Salvatori G., Jeannin P., Manfredi A. and Mantovani, A. (2006) Pentraxins as a key component of innate immunity. Curr. Opin. Immunol. 18, 10-15.PubMedCrossRefGoogle Scholar
  11. Brissett, N.C. and Perkins S.J. (1996) The protein fold of the hyaluronate-binding proteoglycan tandem repeat domain of link protein, aggrecan and CD44 is similar to that of the C-type lectin superfamily. FEBS Lett. 388, 211-216.PubMedCrossRefGoogle Scholar
  12. Cammarata, M., Benenati G., Odom E.W., Salerno G., Vizzini A., Vasta, G.R. and Parrinello N. (2007) Isolation and characterization of a fish F-type lectin from gilt head bream (Sparus aurata) serum. Biochim. Biophys. Acta 1770, 150-155.PubMedGoogle Scholar
  13. Cannon, J.P., Haire R.N. and Litman G.W. (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat. Immunol. 3, 1124-1125.CrossRefGoogle Scholar
  14. Dodd, R.B. and Drickamer K. (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11, 71-79.CrossRefGoogle Scholar
  15. Drickamer, K. (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360, 183-186.PubMedCrossRefGoogle Scholar
  16. Drickamer, K. and Dodd R.B. (1999) C-Type lectin-like domains in Caenorhabditis elegans: predictions from the complete genome sequence. Glycobiology 9, 1357-1369.PubMedCrossRefGoogle Scholar
  17. Ewart, K.V., Li Z., Yang D.S., Fletcher G.L. and Hew C.L. (1998) The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. Biochemistry 37, 4080-4085.PubMedCrossRefGoogle Scholar
  18. Feinberg, H., Uitdehaag J.C., Davies J.M., Wallis R., Drickamer K. and Weis, W.I. (2003) Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2. EMBO J. 22, 2348-2359.PubMedCrossRefGoogle Scholar
  19. Firbank, S.J., Rogers M.S., Wilmot C.M., Dooley D.M., Halcrow M.A., Knowles, P.F., McPherson M.J. and Phillips S.E. (2001) Crystal structure of the precursor of galactose oxidase: an unusual self-processing enzyme. Proc. Natl. Acad. Sci. U S A 98, 12932-12937.CrossRefGoogle Scholar
  20. Fujita, T. (2002) Evolution of the lectin-complement activation pathway and its role in innate immunity. Nat. Rev. Immunol. 2, 346-353.PubMedCrossRefGoogle Scholar
  21. Fujita, T., Matsushita M. and Endo Y. (2004) The lectin-complement pathway–its role in innate immunity and evolution. Immunol. Rev. 198, 185-202.PubMedCrossRefGoogle Scholar
  22. Garred, P., Larsen F., Seyfarth J., Fujita R. and Madsen H.O. (2006) Mannose-binding lectin and its genetic variants. Genes Immun. 7, 85-94.PubMedCrossRefGoogle Scholar
  23. Gaskell, A., Crennell S. and Taylor G. (1995) The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197-1205.PubMedCrossRefGoogle Scholar
  24. Honda, S., Kashiwagi M., Miyamoto K., Takei Y. and Hirose S. (2000) Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem. 275, 33151-33157.PubMedCrossRefGoogle Scholar
  25. Iliev, D.B., Roach J., C., Mackenzie S., Planas J.V. and Goetz F.W. (2005) Endotoxin recognition: in fish or not in fish? FEBS Lett. 579, 6519-6528.PubMedCrossRefGoogle Scholar
  26. Ito, N., Phillips S.E., Stevens C., Ogel Z.B., McPherson M.J., Keen, J.N., Yadav K.D. and Knowles P.F. (1991) Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 350, 87-90.PubMedCrossRefGoogle Scholar
  27. John, C.M., Jarvis G.A., Swanson K.V., Leffler H., Cooper M.D., Huflejt, M.E. and Griffiss J.M. (2002) Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell Micorbiol. 4, 649-662.CrossRefGoogle Scholar
  28. Kakinuma, Y., Endo Y., Takahashi M., Nakata M., Matsushita M., Takenoshita, S. and Fujita T. (2003) Molecular cloning and characterization of novel ficolins from Xenopus laevis. Immunogenetics 55, 29-37.PubMedGoogle Scholar
  29. Kang, D., Liu G., Lundstrom A., Gelius E. and Steiner H. (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. U S A 95, 10078-10082.PubMedCrossRefGoogle Scholar
  30. Kelly, G., Prasannan S., Daniell S., Fleming K., Frankel G., Dougan G., Connerton, I. and Matthews S. (1999) Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat. Struct. Biol. 6, 313-318.PubMedCrossRefGoogle Scholar
  31. Khalturin, K., Panzer Z., Cooper M.D. and Bosch T.C. (2004) Recognition strategies in the innate immune system of ancestral chordates. Mol. Immunol. 41, 1077-1087.PubMedCrossRefGoogle Scholar
  32. Khan, A.I. and Kubes P. (2003) L-selectin: an emerging player in chemokine function. Microcirculation 10, 351-358.PubMedGoogle Scholar
  33. Kim, M.S., Byun M. and Oh B.H. (2003) Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat. Immunol. 4, 787-793.PubMedCrossRefGoogle Scholar
  34. Lee, J.K., Baum L.G., Moremen K. and Pierce M. (2004) The X-lectins: a new family with homology to the Xenopus laevis oocyte lectin XL-35. Glycoconj.J. 21, 443-450.PubMedCrossRefGoogle Scholar
  35. Lehmann, F., Gathje H., Kelm S. and Dietz F. (2004) Evolution of sialic acid-binding proteins: molecular cloning and expression of fish siglec-4. Glycobiology 14, 959-968.PubMedCrossRefGoogle Scholar
  36. Leonard, P.M., Adema C.M., Zhang S.M. and Loker E.S. (2001) Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269, 155-165.PubMedCrossRefGoogle Scholar
  37. Leulliot, N., Quevillon-Cheruel, S., Sorel I., Graille M., Meyer P., Liger, D., Blondeau K., Janin J. and van Tilbeurgh H. (2004) Crystal structure of yeast allantoicase reveals a repeated jelly roll motif. J. Biol. Chem. 279, 23447-23452.PubMedCrossRefGoogle Scholar
  38. Ley, K. and Kansas G.S. (2004) Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325-335.PubMedCrossRefGoogle Scholar
  39. Lindstrom-Dinnetz, I., Sun S.C. and Faye I. (1995) Structure and expression of Hemolin, an insect member of the immunoglobulin gene superfamily. Eur. J. Biochem. 230, 920-925.PubMedCrossRefGoogle Scholar
  40. Ling, E. and Yu X.Q. (2006) Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 30, 289-299.PubMedCrossRefGoogle Scholar
  41. Liu, F.T. and Rabinovich G.A. (2005) Galectins as modulators of tumour progression. Nat. Rex. Cancer 5, 29-41.CrossRefGoogle Scholar
  42. Liu, Y. and Eisenberg D. (2002) 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285-1299.PubMedCrossRefGoogle Scholar
  43. Loeb, J.A. and Drickamer K. (1988) Conformational changes in the chicken receptor for endocytosis of glycoproteins. Modulation of ligand-binding activity by Ca2+ and pH. J. Biol. Chem. 263, 9752-9760.PubMedGoogle Scholar
  44. Ludwig, I.S., Geijtenbeek T.B. and van Kooyk Y. (2006) Two way communication between neutrophils and dendritic cells. Curr. Opin. Pharmacol., 4.Google Scholar
  45. Macedo-Ribeiro, S., Bode W., Huber R., Quinn-Allen, M.A., Kim S.W., Ortel, T.L., Bourenkov G.P., Bartunik H.D., Stubbs M.T., Kane W.H. and Fuentes-Prior, P. (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402, 434-439.PubMedCrossRefGoogle Scholar
  46. Marintchev, A., Mullen M.A., Maciejewski M.W., Pan B., Gryk M.R. and Mullen, G.P. (1999) Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat. Struct. Biol. 6, 884-893.PubMedCrossRefGoogle Scholar
  47. Mendoza, H.L. and Faye I. (1999) Physiological aspects of the immunoglobulin superfamily in invertebrates. Dev. Comp. Immunol. 23, 359-374.PubMedCrossRefGoogle Scholar
  48. Odom, E.W. and Vasta G.R. (2006) Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis). J. Biol. Chem. 281, 1698-1713.PubMedCrossRefGoogle Scholar
  49. Pancer, Z. and Cooper M.D. (2006) The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497-518.PubMedCrossRefGoogle Scholar
  50. Rabinovich, G.A., Rubinstein N. and Toscano M.A. (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim. Biophys. Acta 1572, 274-284.PubMedGoogle Scholar
  51. Rabinovich, G.A., Toscano M.A., Ilarregui J.M. and Rubinstein N. (2004) Shedding light on the immunomodulatory properties of galectins: novel regulators of innate and adaptive immune responses. Glycoconj. J. 16, 565-573.Google Scholar
  52. Saito, T., Hatada M., Iwanaga S. and Kawabata S. (1997) A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J. Biol. Chem. 272, 30703-30708.PubMedCrossRefGoogle Scholar
  53. Sun, S.C., Lindstrom I., Boman H.G., Faye I. and Schmidt O. (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250, 1729-1732.PubMedCrossRefGoogle Scholar
  54. Tasumi, S., Ohira T., Kawazoe I., Suetake H., Suzuki Y. and Aida K. (2002) Primary structure and characteristics of a lectin from skin mucus of the Japanese eel Anguilla japonica. J. Biol. Chem. 277, 27305-27311.PubMedCrossRefGoogle Scholar
  55. Tateno, H., Ogawa T., Muramoto K., Kamiya H. and Saneyoshi M. (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci. Biotechnol. Biochem. 66, 604-612.PubMedCrossRefGoogle Scholar
  56. Taylor, M.E. and Drickamer K. (2003) Binding of oligosaccharide ligands to the selectins requires additional interactions with the carbohydrate-recognition domains. In: M.E. Taylor and K. Drickamer (Eds), Introduction of Glycobiology. Oxford University Press, Oxford; New York p. 207.Google Scholar
  57. Tsutsui, S., Tasumi S., Suetake H., Kikuchi K. and Suzuki Y. (2006) Carbohydrate-binding site of a novel mannose-specific lectin from fugu (Takifugu rubripes) skin mucus. Comp. Biochem. Physio. B Biochem. Mol. Biol. 143, 514-519.CrossRefGoogle Scholar
  58. van den Berg T.K., Yoder J.A. and Litman G.W. (2004) On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol. 25, 11-16.CrossRefGoogle Scholar
  59. Varki, A., Cummings R., Esko J., Freeze H., Hart G. and Marth J. (1999) bat> Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  60. Vasta, G.R., Ahmed H., Du S.-J. and Henrikson D. (2004a) Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj. J. 21, 503-521.CrossRefGoogle Scholar
  61. Vasta, G.R., Ahmed H. and Odom E.W. (2004b) Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr. Opin. Struct. Biol. 14, 617-630.CrossRefGoogle Scholar
  62. Vasta, G.R., Quesenberry M., Ahmed H. and O’Leary, N. (1999) C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev. Comp. Immunol. 23, 401-420.PubMedCrossRefGoogle Scholar
  63. Vasta, G.R., Quesenberry M.S., Ahmed H. and O’Leary, N. (2001) Lectins from tunicates: structure-function relationships in innate immunity. Adv. Exp. Med. Biol. 484, 275-287.PubMedGoogle Scholar
  64. Vilches, C. and Parham P. (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217-251.PubMedCrossRefGoogle Scholar
  65. Vitved, L., Holmskov U., Koch C., Teisner B., Hansen S., Salomonsen J. and Skjodt K. (2000) The homologue of mannose-binding lectin in the carp family cyprinidae is expressed at high level in spleen, and the deduced primary structure predicts affinity for galactose. Immunogenetics 51, 955-964.PubMedCrossRefGoogle Scholar
  66. Wallis, R. (2002) Structural and functional aspects of complement activation by mannose-binding protein. Immunibiology 205, 433-445.CrossRefGoogle Scholar
  67. Weis, W.I. and Drickamer K. (1994) Trimeric structure of a C-type mannose-binding protein. Structure 2, 1227-1240.PubMedCrossRefGoogle Scholar
  68. Weis, W.I., Drickamer K. and Hendrickson W.A. (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127-134.PubMedCrossRefGoogle Scholar
  69. Weis, W.I., Taylor M.E. and Drickamer K. (1998) The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19-34.PubMedCrossRefGoogle Scholar
  70. Wendt, K.S., Vodermaier H.C., Jacob U., Gieffers C., Gmachl M., Peters, J.M., Huber R. and Sondermann P. (2001) Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nat. Struct. Biol. 8, 784-788.PubMedCrossRefGoogle Scholar
  71. Yoder, J.A., Litman R.T., Mueller M.G., Desai S., Dobrinski K.P., Montgomery, J.S., Buzzeo M.P., Ota T., Amemiya C.T., Trede N.S., Wei, S., Djeu J.Y., Humphray S., Jekosch K., Hernandez Prada J.A., Ostrov, D.A. and Litman G.W. (2004) Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc. Natl. Acad. Sci. U S A 101, 15706-15711.PubMedCrossRefGoogle Scholar
  72. Yoder, J.A., Mueller M.G., Nichols K.M., Ristow S.S., Thorgaard G.H., Ota, T. and Litman G.W. (2002) Cloning novel immune-type inhibitory receptors from the rainbow trout, Oncorhynchus mykiss. Immunogenetics 54.Google Scholar
  73. Zelensky, A.N. and Gready J.E. (2004) C-type lectin-like domains in Fugu rubripes. BMC Genomics 5, 51.PubMedCrossRefGoogle Scholar
  74. Zelensky, A.N. and Gready J.E. (2005) The C-type lectin-like domain superfamily. FEBS Lett. 272, 6179-6217.Google Scholar
  75. Zhang, H., Robison B., Thorgaard G.H. and Ristow S.S. (2000) Cloning, mapping and genomic organization of a fish C-type lectin gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Biochim. Biophys. Acta 1494, 14-22.PubMedGoogle Scholar
  76. Zhang, S.-M., Ademam C.M., Kepler T.B. and Locker E.S. (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305, 251-254.PubMedCrossRefGoogle Scholar
  77. Zhang, S.M. and Loker E.S. (2003) The FREP gene family in the snail Biomphalaria glabrata: additional members, and evidence consistent with alternative splicing and FREP retrosequences. Fibrinogen-related proteins. Dev. Comp. Immunol. 27, 175-187.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gerardo R. Vasta
    • 1
  • Hafiz Ahmed
    • 1
  • Satoshi Tasumi
    • 1
  • Eric W. Odom
    • 1
  • Keiko Saito
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimore

Personalised recommendations