Flagellin Signalling in Plant Immunity

  • Delphine Chinchilla
  • Thomas Boller
  • Silke Robatzek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


MAPK Cascade WRKY Transcription Factor Immune Receptor Xanthomonas Campestris Plant Immunity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akira, S., and Takeda, K., 2004,, Toll-like receptor signaling, Nat. Rev. Immunol. 4: 499-511.PubMedCrossRefGoogle Scholar
  2. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjorn, Nielsen, H., Hirt, H., Somssich, I., Mattsson, O., and Mundy, J., 2005, The MAP kinase substrate MKS1 is a regulator of plant defense responses, EMBO J. 24: 2579-2589.PubMedCrossRefGoogle Scholar
  3. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J., 2002,, MAP kinase signalling cascade in Arabidopsis innate immunity, Nature 415: 977-983.PubMedCrossRefGoogle Scholar
  4. Bakker, E.G., Toomajian, C., Kreitman, M., Bergelson, J., 2006,, A genome-wide survey of R gene polymorphisms in Arabidopsis, Plant Cell 18: 1803-1818.PubMedCrossRefGoogle Scholar
  5. Bauer, Z., Gomez-Gomez, L., Boller, T., and Felix, G., 2001,, Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites, J. Biol. Chem. 267: 45669-45676.CrossRefGoogle Scholar
  6. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G., 2006,, The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception, Plant Cell 18: 465-476.PubMedCrossRefGoogle Scholar
  7. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J., 2006,, Host-microbe interactions: shaping the evolution of the plant immune response, Cell 124: 803-814.PubMedCrossRefGoogle Scholar
  8. de Torres, M., Mansfield, J.W., Grabov, N., Brown, I.R., Ammouneh, H., Tsiamis, G., Forsyth, A., Robatzek, S., Grant, M., and Boch, J., 2006,, Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis, Plant J. 47: 368-382.PubMedCrossRefGoogle Scholar
  9. Dong,X., 2004,, NPR1, all things considered, Curr Opin Plant Biol. 7: 547-52.PubMedCrossRefGoogle Scholar
  10. Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q., and Alfano, J.R., 2003,, The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants, Mol. Microbiol. 49: 377-387.PubMedCrossRefGoogle Scholar
  11. Felix, G., Duran, J.D., Volko, S., and Boller, T., 1999,, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin, Plant J. 18: 265-276.PubMedCrossRefGoogle Scholar
  12. Fujiwara, S., Tanaka, N., Kaneda, T., Takayama, S., Isogai, A., and Che, F.S., 2004,, Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells, Mol Plant Microbe Interact. 17: 986-998.PubMedCrossRefGoogle Scholar
  13. Gomez-Gomez, L., and Boller, T., 2000,, FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Mol. Cell. 5: 1003-1011.PubMedCrossRefGoogle Scholar
  14. Gomez-Gomez, L., Felix, G. and Boller, T., 1999,, A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277-284Google Scholar
  15. Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L., 2006,, Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria, Annu. Rev. Microbiol. 60:425-449.Google Scholar
  16. Gross, A., Kapp, D., Nielsen, T., and Niehaus, K., 2005,, Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nictotiana tabacum, New Phytologist. 165: 215-226.PubMedCrossRefGoogle Scholar
  17. Haglund, K., Di Fiore, P.P., and Dikic, I., 2003,, Distinct monoubiquitin signals in recptor endocytosis., Trends Biochem. Sci. 28: 598-603.PubMedCrossRefGoogle Scholar
  18. Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K., and Shirasu, K., 2006,, MEKK1 is requried for MPK4 activation and regulates tissue specific and temperature dependent cell death in Arabidopsis, J. Biol. Chem.Google Scholar
  19. Janjusevic, R., Abramovitch, R.B., Martin, G.B., and Stebbins, C.E., 2006,, A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase, Science 311: 222-226.PubMedCrossRefGoogle Scholar
  20. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G., 2004, The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants, Plant Cell 16: 3496-3507.PubMedCrossRefGoogle Scholar
  21. He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., and Sheen, J., 2006,, Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity, Cell 125: 563-575.PubMedCrossRefGoogle Scholar
  22. Husebye, H., Halaas, O., Stenmark, H., Tunheim, G., Sandanger, O., Bogen, B., Brech, A., Latz, E., and Espevik, T., 2006,, Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity, EMBO J. 25: 683-692.PubMedCrossRefGoogle Scholar
  23. Kurten, R.C., 2003,, Sorting mortifs in receptor trafficking, Adv. Drug Deliv. Rev. 55: 1405-1419.PubMedCrossRefGoogle Scholar
  24. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y., 2006,, Plant stomata function in innate immunity against bacterial invasion, Cell 126: 969-980.PubMedCrossRefGoogle Scholar
  25. Meszaros, T., Helfer, A., Hatzimasoura, E., Magyar, Z., Serazetdinova, L., Rios, G., Bardoczy, V., Teige, M., Koncz, C., Peck, S., and Bogre, L., 2006,, The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin, Plant J.Google Scholar
  26. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D., 2006,, A plant miRNA contributes to antibacterial resistance by repressing auxin signaling, Science 312: 436-439.PubMedCrossRefGoogle Scholar
  27. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., Jones, J.D., 2004,, Interplay between fg22 innate immune response, Avr9-race-specific defense response and other bacterial interactions, Plant Phys. 135: 1-16.CrossRefGoogle Scholar
  28. Nuhse, T.S., Peck, S.C., Hirt, H. and Boller, T., 2000,, Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6, J. Biol. Chem. 275, 7521-7526.PubMedCrossRefGoogle Scholar
  29. Nuhse, T.S., Boller, T., and Peck, S.C., 2003,, A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin, J. Biol. Chem. 278: 45248-45254.PubMedCrossRefGoogle Scholar
  30. Peck, S.C., Nuhse, T.S., Hess, D., Iglesias, A., Meins, F., and Boller, T., 2001, Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors, Plant Cell 13: 1467-1475.Google Scholar
  31. Pfund, C., Tans-Kersten, J., Dunning, F.M., Alonso, J.M., Ecker, J.R., Allen, C., and Bent, A.F., 2004,, Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana, Mol. Plant Microbe Interact. 17: 696-706.CrossRefGoogle Scholar
  32. Rivas, S., and Thomas, C.M., 2005,, Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum, Annu. Rev. Phytopathol. 43: 395-436.PubMedCrossRefGoogle Scholar
  33. Robatzek, S., 2006,, Vesicle trafficking in plant immune responses, Cell. Microbiol. In press.Google Scholar
  34. Robatzek, S., Chinchilla, D., and Boller, T., 2006,, Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis, Genes Dev. 20: 537-542.PubMedCrossRefGoogle Scholar
  35. Ron, M., and Avni, A., 2004,, The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato, Plant Cell 16: 1604-1615.PubMedCrossRefGoogle Scholar
  36. Shiu, S.H., and Bleecker, A.B. (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, Proc. Natl. Acad. Sci. USA 98: 10763-10768.PubMedCrossRefGoogle Scholar
  37. Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C., and Ronald, P., 1995, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21, Science 270: 1804-1806.PubMedCrossRefGoogle Scholar
  38. Sun, W., Dunning, F.M., Pfund, C., Weingarten, R., and Bent, A.F., 2006,, Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses, Plant Cell 18: 764-779.PubMedCrossRefGoogle Scholar
  39. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, F., 2003,, Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae, Plant Cell 15: 317-330.PubMedCrossRefGoogle Scholar
  40. Tor, M., Brown, D., Cooper, A., Woods-Tor, A., Sjolander, K., Jones, J.D.G., Holub, E.B., 2004,, Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato CF-9, Plant Phys. 135: 1100-1112.CrossRefGoogle Scholar
  41. Ulker, B. and Somssich, I.E., 2004,, WRKY transcription factors: from DNA binding towards biological function, Curr. Opin. Plant Biol. 7: 491-498.PubMedCrossRefGoogle Scholar
  42. Yao, J., and Allen, C., 2006, Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum, J. Bacteriol. 188: 3697-3708.PubMedCrossRefGoogle Scholar
  43. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J., 2004,, Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes, Proc. Natl. Acad. Sci. USA 101: 15811-15816.PubMedCrossRefGoogle Scholar
  44. Zipfel, C., and Felix, G., 2005,, Plants and animals: a different taste for microbes?, Curr Opin Plant Biol. 8: 353-360.PubMedCrossRefGoogle Scholar
  45. Zipfel, C., Kunze, G., Chinchilla, D, Caniard, A., Jones, J.D., Boller, T., and Felix, G., 2006,, Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation, Cell 125: 749-760.PubMedCrossRefGoogle Scholar
  46. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T., 2004,, Bacterial disease resistance in Arabidopsis through flagellin perception, Nature 428: 764-767.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Delphine Chinchilla
    • 1
  • Thomas Boller
    • 1
  • Silke Robatzek
    • 1
    • 2
  1. 1.Basel-Zurich-Plant Science Center, Botanical InstituteUniversity Basel4056 BaselSwitzerland
  2. 2.Max-Planck-Institute for Plant Breeding Research50829 CologneGermany

Personalised recommendations