Advertisement

Pathogen-Specific Innate Immune Response

  • Ahmet Zeytun
  • Jennifer C. van Velkinburgh
  • Paige E. Pardington
  • Robert R. Cary
  • Goutam Gupta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)

Abstract

This chapter summarizes our studies on the three toll-like receptor pathways, namely TLR4, TLR2, and TLR3, induced by lipopolysaccharides (LPS), peptidoglycan (PGN), and double-stranded RNA (dsRNA) in antigen presenting cells (APC). The particular emphasis is on the activation of human innate immune responses via cytokine and chemokine production. Three different measurements have been performed on monocytic and dendritic cells as model APCs: (i) the expression of various cytokine and chemokine genes by real-time PCR, (ii) the release of the cytokines and chemokines by ELISA, and (iii) gene expression analysis by cytokine and chemokine pathway-specific and whole genome microarrays. Real-time PCR and ELISA enable us to identify cytokines and chemokines that are produced specifically upon LPS, PGN, or dsRNA stimulation. Subsequently, microarray studies and appropriate validation experiments help us to identify genes involved in the upstream pathways that cause the induction of cytokines and chemokines. It is evident that TLR4-LPS, TLR2-PGN, and TLR3-dsRNA pathways are distinguished by the specific set of cytokines and chemokines they induce as well as by the upstream signaling events.

Keywords

Innate Immune Response Chemokine Gene Single Arrow Model APCs Chemokine Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner, B., Weber, M., Quirling, M., Fischer, C., Page, S., Adam, M., Von Schilling, C., Waterhouse, C., Schmid, C., Neumeier, D., and Brand, K. (2002) Increased IkappaB kinase activity is associated with activated NF-kappaB in acute myeloid blasts. Leukemia 16(10):2062-2071.PubMedCrossRefGoogle Scholar
  2. Beutler, B., Hoebe, K., Du, X., and Ulevitch, R.J. (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74(4):479-485.PubMedCrossRefGoogle Scholar
  3. Bian, Z.M., Elner, S.G., Yoshida, A., and Elner, V.M. (2004) Differential involvement of phosphoinositide 3-kinase/Akt in human RPE MCP-1 and IL-8 expression. Invest Ophthalmol Vis Sci 45(6): 1887-1896.PubMedCrossRefGoogle Scholar
  4. Carroll, T.P., Greene, C.M., Taggart, C.C., Bowie, A.G., O’Neill, S.J., and McElvaney, N.G. (2005) Viral inhibition of IL-1- and neutrophil elastase-induced inflammatory responses in bronchial epithelial cells. J Immunol 175(11):7594-7601.PubMedGoogle Scholar
  5. de Bouteiller, O., Merck, E., Hasan, U.A., Hubac, S., Benguigui, B., Trinchieri, G., Bates, E.E., and Caux, C. (2005) Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem 280(46):38133-38145.PubMedCrossRefGoogle Scholar
  6. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491-496.PubMedCrossRefGoogle Scholar
  7. Hacker, H. and Karin, M. (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006(357):re13.Google Scholar
  8. Hessle, C.C., Andersson, B., and Wold, A.E. (2005) Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine 30(6):311-318.PubMedCrossRefGoogle Scholar
  9. Hoebe, K., Janssen, E.M., Kim, S.O., Alexopoulou, L., Flavell, R.A., Han, J., and Beutler, B. (2003) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4(12):1223-1229.PubMedCrossRefGoogle Scholar
  10. Ishii, K.J., Coban, C., and Akira, S. (2005) Manifold mechanisms of toll-like receptor-ligand recognition. J Clin Immunol 25(6):511-521.PubMedCrossRefGoogle Scholar
  11. Johnson, C.N., Adkins, N.L., and Georgel, P. (2005) Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 83(4):405-417.PubMedCrossRefGoogle Scholar
  12. Julkunen, I., Sareneva, T., Pirhonen, J., Ronni, T., Melen, K., and Matikainen, S. (2001) Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12(2-3):171-180.PubMedCrossRefGoogle Scholar
  13. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354-357.PubMedCrossRefGoogle Scholar
  14. Kopp, E. and Medzhitov, R. (2003) Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15(4):396-401.PubMedCrossRefGoogle Scholar
  15. Martin, M.U. and Wesche, H. (2002) Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592(3):265-280.PubMedCrossRefGoogle Scholar
  16. Matsumoto, M., Funami, K., Oshiumi, H., and Seya, T. (2004) Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. Microbiol Immunol 48(3):147-154.PubMedGoogle Scholar
  17. Matsumoto, M., Funami, K., Tanabe, M., Oshiumi, H., Shingai, M., Seto, Y., Yamamoto, A., and Seya, T. (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171(6):3154-3162.PubMedGoogle Scholar
  18. Nagorsen, D., Marincola, F.M., and Panelli, M.C. (2004) Cytokine and chemokine expression profiles of maturing dendritic cells using multiprotein platform arrays. Cytokine 25(1):31-35.PubMedCrossRefGoogle Scholar
  19. Sieczkarski, S.B. and Whittaker, G.R. (2003) Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 4(5):333-343.PubMedCrossRefGoogle Scholar
  20. Takeda, K., Kaisho, T., and Akira, S. (2003) Toll-like receptors. Annu Rev Immunol 21:335-376.PubMedCrossRefGoogle Scholar
  21. Weiss-Haljiti, C., Pasquali, C., Ji, H., Gillieron, C., Chabert, C., Curchod, M.L., Hirsch, E., Ridley, A.J., van Huijsduijnen, R.H., Camps, M., and Rommel, C. (2004) Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J Biol Chem 279(41):43273-43284.PubMedCrossRefGoogle Scholar
  22. Yamamoto, M., Takeda, K., and Akira, S. (2004) TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 40(12):861-868.PubMedCrossRefGoogle Scholar
  23. Zeytun, A., van Velkinburgh, J.C., and Gupta, G. Unpublished Data.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ahmet Zeytun
    • 1
  • Jennifer C. van Velkinburgh
    • 1
  • Paige E. Pardington
    • 1
  • Robert R. Cary
    • 1
  • Goutam Gupta
    • 1
  1. 1.Biosciences DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations