Immune Effects of Autoantigen-Associated RNA

  • Eric L. Greidinger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


Systemic Lupus Erythematosus Interferon Regulatory Factor Mixed Connective Tissue Disease Plasmacytoid Dendritic Cell Idiopathic Inflammatory Myopathy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738.PubMedCrossRefGoogle Scholar
  2. Barath S., Sipka S., Aleksza M., Szegedi A., Szodoray .P, Vegh J., Szegedi G., Bodolay E. (2006) Regulatory T cells in peripheral blood of patients with mixed connective tissue disease. Scand. J. Rheumatol. 35, 300-304.PubMedCrossRefGoogle Scholar
  3. Barrat F.J., Meeker T., Gregorio J., Chan J.H., Uematsu S., Akira S., Chang B., Duramad O., Coffman R.L. (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131-1139.PubMedCrossRefGoogle Scholar
  4. Blander JM, Medzhitov R. (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808-812.Google Scholar
  5. Bonfa E., Elkon K.B. (1986) Clinical and serologic associations of the antiribosomal P protein antibody. Arthritis Rheum. 29, 981-985.PubMedCrossRefGoogle Scholar
  6. Boule M.W., Broughton C., Mackay F., Akira S., Marshak-Rothstein A., Rifkin I.R. (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631-1640.PubMedCrossRefGoogle Scholar
  7. Branlant C., Krol A., Ebel J.P., Lazar E., Gallinaro H., Jacob M., Sri-Widada J., Jeanteur P. (1980) Nucleotide sequences of nuclear U1A RNAs from chicken, rat and man. Nucleic Acids Res. 8, 4143-4154.PubMedCrossRefGoogle Scholar
  8. Christensen S.R., Shupe J., Nickerson K., Kashgarian M., Flavell R.A., Shlomchik M.J. (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417-428.PubMedCrossRefGoogle Scholar
  9. Cohen P.L., Caricchio R., Abraham V., Camenisch T.D., Jennette J.C., Roubey R.A., Earp H.S., Matsushima G., Reap E.A. (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135-140.PubMedCrossRefGoogle Scholar
  10. de Bouteiller O., Merck E., Hasan U.A., Hubac S., Benguigui B., Trinchieri G., Bates E.E., Caux C. (2005) Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J. Biol. Chem. 280, 38133-38145.PubMedCrossRefGoogle Scholar
  11. Degen W.G., Aarssen Y., Pruijn G.J., Utz P.J., van Venrooij W.J. (2000) The fate of U1 snRNP during anti-Fas induced apoptosis: specific cleavage of the U1 snRNA molecule. Cell Death Differ. 7, 70-79.PubMedCrossRefGoogle Scholar
  12. Deshmukh U.S., Kannapell C.C., Fu S.M. (2002) Immune responses to small nuclear ribonucleoproteins: antigen-dependent distinct B cell epitope spreading patterns in mice immunized with recombinant polypeptides of small nuclear ribonucleoproteins. J. Immunol. 168, 5326-5332.PubMedGoogle Scholar
  13. Dhodapkar M.V., Steinman R.M., Krasovsky J., Munz C., Bhardwaj N. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 193, 233-238.PubMedCrossRefGoogle Scholar
  14. Du Clos T.W. (1989) C-reactive protein reacts with the U1 small nuclear ribonucleoprotein. J. Immunol. 143, 2553-2559.PubMedGoogle Scholar
  15. Edwards A.D., Diebold S.S., Slack E.M., Tomizawa H., Hemmi H., Kaisho T., Akira S., Reis e Sousa C. (2003) Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 33, 827-833.PubMedCrossRefGoogle Scholar
  16. El-Hefnawy T., Raja S., Kelly .L, Bigbee W.L., Kirkwood J.M., Luketich J.D., Godfrey T.E. (2004) Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 50, 564-573.PubMedCrossRefGoogle Scholar
  17. Fitzgerald K.A., Rowe D.C., Barnes B.J., Caffrey D.R., Visintin A., Latz E., Monks B., Pitha P.M., Golenbock D.T. (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043-1055.PubMedCrossRefGoogle Scholar
  18. Fu Y., Xie C., Chen J., Zhu J., Zhou H., Thomas J., Zhou X.J., Mohan C. (2006) Innate stimuli accentuate end-organ damage by nephrotoxic antibodies via Fc receptor and TLR stimulation and IL-1/TNF-alpha production. J. Immunol. 176, 632-639.PubMedGoogle Scholar
  19. Gorden K.B., Gorski K.S., Gibson S.J., Kedl R.M., Kieper W.C., Qiu X., Tomai M.A., Alkan S.S., Vasilakos J.P. (2005) Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174, 1259-1268.PubMedGoogle Scholar
  20. Gorden K.K., Qiu X.X., Binsfeld C.C., Vasilakos J.P., Alkan S.S.. (2006) Cutting Edge: Activation of Murine TLR8 by a Combination of Imidazoquinoline Immune Response Modifiers and PolyT Oligodeoxynucleotides. J. Immunol. 177, 6584-6587.PubMedGoogle Scholar
  21. Gottenberg J.E., Cagnard N., Lucchesi C., Letourneur .F, Mistou S., Lazure T., Jacques S., Ba N., Ittah M., Lepajolec C., Labetoulle M., Ardizzone M., Sibilia J., Fournier C., Chiocchia G., Mariette X. (2006) Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc. Natl. Acad. Sci. U S A. 103, 2770-5.PubMedCrossRefGoogle Scholar
  22. Greidinger E.L. (2001) Apoptosis in lupus pathogenesis. Front. Biosci. 6, D1392-D1402.PubMedCrossRefGoogle Scholar
  23. Greidinger E.L., Zang Y., Jaimes K., Hogenmiller S., Nassiri M., Bejarano P., Barber G.N., Hoffman R.W. (2006) A murine model of mixed connective tissue disease induced with U1 small nuclear RNP autoantigen. Arthritis Rheum. 54, 661-669.PubMedCrossRefGoogle Scholar
  24. Hart O.M., Athie-Morales V., O’Connor G.M., Gardiner C.M. (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J. Immunol. 175, 1636-1642.PubMedGoogle Scholar
  25. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529.PubMedCrossRefGoogle Scholar
  26. Hewson C.A., Jardine A., Edwards M..R, Laza-Stanca V., Johnston S.L. (2005) Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol. 79, 12273-12279.PubMedCrossRefGoogle Scholar
  27. Hoffman R.W., Gazitt T., Foecking M.F., Ortmann R.A., Misfeldt M., Jorgenson R., Young S.L., Greidinger E.L. (2004) U1 RNA induces innate immunity signaling. Arthritis Rheum. 50, 2891-2896.PubMedCrossRefGoogle Scholar
  28. Horsmans Y., Berg T., Desager J.P., Mueller T., Schott E., Fletcher S.P., Steffy K.R., Bauman L.A., Kerr B.M., Averett D.R. (2005) Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 42, 724-7231.PubMedCrossRefGoogle Scholar
  29. Hubert F.X., Voisine C., Louvet C., Heslan J.M., Ouabed A., Heslan M., Josien R. (2006) Differential pattern recognition receptor expression but stereotyped responsiveness in rat spleen dendritic cell subsets. J. Immunol. 177, 1007-1016.PubMedGoogle Scholar
  30. Ito T., Amakawa R., Kaisho T., Hemmi H., Tajima K., Uehira K., Ozaki Y., Tomizawa H., Akira S., Fukuhara S. (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195, 1507-1512.PubMedCrossRefGoogle Scholar
  31. Jakymiw A., Ikeda K., Fritzler M.J., Reeves W.H., Satoh M., Chan E.K. (2006) Autoimmune targeting of key components of RNA interference. Arthritis Res. Ther. 8, R87.PubMedCrossRefGoogle Scholar
  32. Kao A.H., Lacomis D., Lucas M., Fertig N., Oddis C.V. (2004) Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 50, 209-215.Google Scholar
  33. Kariko K., Buckstein M, Ni H., Weissman D. (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165-175.PubMedCrossRefGoogle Scholar
  34. Kariko K., Ni H., Capodici J., Lamphier M., Weissman D. (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542-12550.PubMedCrossRefGoogle Scholar
  35. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105.PubMedCrossRefGoogle Scholar
  36. Kelly KM, Zhuang H, Nacionales DC, Scumpia PO, Lyons R, Akaogi J, Lee P, Williams B, Yamamoto M, Akira S, Satoh M, Reeves WH. (2006) “Endogenous adjuvant” activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis Rheum. 54, 1557-1567.PubMedCrossRefGoogle Scholar
  37. Kirou K.A., Lee C., George S., Louca K., Peterson M.G., Crow M.K. (2005) Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491-1503.PubMedCrossRefGoogle Scholar
  38. Koffler D., Faiferman I., Gerber M.A. (1977) Radioimmunoassay for antibodies to cytoplasmic ribosomes in human serum. Science 198, 741-3.PubMedCrossRefGoogle Scholar
  39. Laderach D., Koutouzov S., Bach J.F., Yamamoto A.M. (2003) Concomitant early appearance of anti-ribonucleoprotein and anti-nucleosome antibodies in lupus prone mice. J. Autoimmun. 20, 161-170.PubMedCrossRefGoogle Scholar
  40. Lau C.M., Broughton C., Tabor A.S., Akira S., Flavell R.A., Mamula M.J., Christensen S.R., Shlomchik M.J., Viglianti G.A., Rifkin I.R., Marshak-Rothstein A. (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171-1177.PubMedCrossRefGoogle Scholar
  41. Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, Chignard M, Si-Tahar M. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53.Google Scholar
  42. Lovgren T., Eloranta M.L., Kastner B., Wahren-Herlenius M., Alm G.V., Ronnblom L. (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum. 54, 1917-1927.PubMedCrossRefGoogle Scholar
  43. Marguerie C., Bunn C.C., Beynon H.L., Bernstein R.M., Hughes J.M., So A.K., Walport M.J. (1990) Polymyositis, pulmonary fibrosis and autoantibodies to aminoacyl-tRNA synthetase enzymes. Q. J. Med. 77, 1019-1038.PubMedGoogle Scholar
  44. Marshall B.C., McPherson R.A., Greidinger E., Hoffman R., Adler S.P. (2002) Lack of autoantibody production associated with cytomegalovirus infection. Arthritis Res. 4, R6.PubMedCrossRefGoogle Scholar
  45. Mathews M.B., Bernstein R.M. (1983) Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature 304, 177-179.PubMedCrossRefGoogle Scholar
  46. Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293, 1364-1369.Google Scholar
  47. McClain M.T., Heinlen L.D., Dennis G.J., Roebuck J., Harley J.B., James J.A. (2005) Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11, 85-89.PubMedCrossRefGoogle Scholar
  48. McGaha T.L., Sorrentino B., Ravetch J.V.. (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590-593.PubMedCrossRefGoogle Scholar
  49. Mineo C., Gormley A.K., Yuhanna I.S., Osborne-Lawrence S., Gibson L.L., Hahner L., Shohet R.V., Black S., Salmon J.E., Samols D., Karp D.R., Thomas G.D., Shaul P.W. (2005) FcgammaRIIB mediates C-reactive protein inhibition of endothelial NO synthase. Circ Res. 97, 1124-1131.PubMedCrossRefGoogle Scholar
  50. Mold C., Du Clos T.W. (2006) C-reactive protein increases cytokine responses to Streptococcus pneumoniae through interactions with Fc gamma receptors. J Immunol 176, 7598-604.PubMedGoogle Scholar
  51. Monneaux F., Briand J.P., Muller S. (2000) B and T cell immune response to small nuclear ribonucleoprotein particles in lupus mice: autoreactive CD4(+) T cells recognize a T cell epitope located within the RNP80 motif of the 70K protein. Eur. J. Immunol. 30, 2191-2200.PubMedCrossRefGoogle Scholar
  52. Monneaux F., Dumortier H., Steiner G., Briand J.P., Muller S. (2001) Murine models of systemic lupus erythematosus: B and T cell responses to spliceosomal ribonucleoproteins in MRL/Fas(lpr) and (NZB x NZW)F(1) lupus mice. Int Immunol. 13, 1155-1163.PubMedCrossRefGoogle Scholar
  53. O’Hanlon T.P., Carrick D.M., Targoff I.N., Arnett F.C., Reveille J.D., Carrington M., Gao X., Oddis C.V., Morel P.A., Malley J.D., Malley K., Shamim E.A., Rider L.G., Chanock S.J., Foster C.B., Bunch T., Blackshear P.J., Plotz P.H., Love L.A., Miller F.W. (2006) Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine (Baltimore). 85, 111-127.CrossRefGoogle Scholar
  54. Pasare C., Medzhitov R. (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003 Feb 14;299(5609) :1033-1036.Google Scholar
  55. Pasare C., Medzhitov R. (2005) Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 560:11-18.PubMedGoogle Scholar
  56. Potter P.K., Cortes-Hernandez J., Quartier P., Botto M., Walport M.J. (2003) Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J. Immunol. 170, 3223-3232.PubMedGoogle Scholar
  57. Raijmakers R., Renz M., Wiemann C., Egberts W.V., Seelig H.P., van Venrooij W.J., Pruijn G.J. (2004) PM-Scl-75 is the main autoantigen in patients with the polymyositis/scleroderma overlap syndrome. Arthritis Rheum. 50, 565-569.PubMedCrossRefGoogle Scholar
  58. Reichlin M, Van Venrooij WJ. (1991) Autoantibodies to the URNP particles: relationship to clinical diagnosis and nephritis. Clin. Exp. Immunol. 83, 286-290.PubMedCrossRefGoogle Scholar
  59. Rodriguez W., Mold C., Marnell L.L., Hutt J., Silverman G.J., Tran D., Du Clos T.W.. Prevention and reversal of nephritis in MRL/lpr mice with a single injection of C-reactive protein. Arthritis Rheum. 54, 325-335.Google Scholar
  60. Rothenfusser S., Goutagny N., DiPerna G., Gong M., Monks B.G., Schoenemeyer A., Yamamoto M., Akira S., Fitzgerald K.A. (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175, 5260-5268.PubMedGoogle Scholar
  61. Scalapino K.J., Tang Q., Bluestone J.A., Bonyhadi M.L., Daikh D.I. (2006) Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol. 177, 1451-1459.PubMedGoogle Scholar
  62. Schlaepfer E., Audige A., Joller H., Speck R.F. (2006) TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J Immunol. 2006 Mar 1; 176(5):2888-95.Google Scholar
  63. Schoenemeyer A., Barnes B.J., Mancl M.E., Latz E., Goutagny N., Pitha P.M., Fitzgerald K.A., Golenbock D.T. (2005) The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J. Biol. Chem. 280, 17005-17012.PubMedCrossRefGoogle Scholar
  64. Schur, P.H. and Monroe, M. (1969) Antibodies to ribonucleic acid in systemic lupus erythematosus. Proc. Natl. Acad. Sci. U S A. 63, 1108-1112.PubMedCrossRefGoogle Scholar
  65. Setty Y.N., Pittman C.B., Mahale A.S., Greidinger E.L., Hoffman R.W. (2002) Sicca symptoms and anti-SSA/Ro antibodies are common in mixed connective tissue disease. J. Rheumatol. 29, 487-9.PubMedGoogle Scholar
  66. Sharp G.C., Irvin W.S., LaRoque R.L., Velez C., Daly V., Kaiser A.D., and Holman H.R. (1971) Association of autoantibodies to different nuclear antigens with clinical patterns of rheumatic disease and responsiveness to therapy. J. Clin. Invest. 50, 350-359.PubMedGoogle Scholar
  67. Sjoberg A.P., Trouw L.A., McGrath F.D., Hack C.E., Blom A.M. (2006) Regulation of complement activation by C-reactive protein: targeting of the inhibitory activity of C4b-binding protein. J. Immunol. 176, 7612-7620.PubMedGoogle Scholar
  68. Skriner K, Sommergruber WH, Tremmel V, Fischer I, Barta A, Smolen JS, Steiner G. (1997) Anti-A2/RA33 autoantibodies are directed to the RNA binding region of the A2 protein of the heterogeneous nuclear ribonucleoprotein complex. Differential epitope recognition in rheumatoid arthritis, systemic lupus erythematosus, and mixed connective tissue disease. J. Clin. Invest. 100, 127-135.PubMedCrossRefGoogle Scholar
  69. Stein A.J., Fuchs G., Fu C., Wolin S.L., Reinisch K.M. (2005) Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell. 121, 529-539.PubMedCrossRefGoogle Scholar
  70. Szalai A.J., Weaver C.T., McCrory M.A., van Ginkel F.W., Reiman R.M., Kearney J.F., Marion T.N., Volanakis J.E. (2003) Delayed lupus onset in (NZB x NZW)F1 mice expressing a human C-reactive protein transgene. Arthritis Rheum. 48, 1602-1611.PubMedCrossRefGoogle Scholar
  71. Tan E.M., Feltkamp T.E., Smolen J.S., Butcher B., Dawkins R., Fritzler M.J., Gordon T., Hardin J.A., Kalden J.R., Lahita R.G., Maini R.N., McDougal J.S., Rothfield N.F., Smeenk R.J., Takasaki Y., Wiik A., Wilson M.R., Koziol J.A. (1997) Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 40, 1601-1611.PubMedCrossRefGoogle Scholar
  72. Triantafilou K., Orthopoulos G., Vakakis E., Ahmed M.A., Golenbock D.T., Lepper P.M., Triantafilou M. (2005) Cell Microbiol. 7, 1117-1126.Google Scholar
  73. Van Eenennaam H., Vogelzangs J.H., Lugtenberg D., Van Den Hoogen F.H., Van Venrooij W.J., Pruijn G.J. (2002) Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum. 46, 3266-3272.PubMedCrossRefGoogle Scholar
  74. Vollmer J., Tluk S., Schmitz C., Hamm S., Jurk M., Forsbach A., Akira S., Kelly K.M., Reeves W.H., Bauer S., Krieg A.M. (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med. 202, 1575-1585.PubMedCrossRefGoogle Scholar
  75. Walter P., Blobel G. (1983) Disassembly and reconstitution of signal recognition particle. Cell. 34:525-533.PubMedCrossRefGoogle Scholar
  76. Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG. (2006) The functional effects of physical interactions among toll-like receptors 7, 8 and 9. J. Biol. Chem. Oct 13; [Epub ahead of print].Google Scholar
  77. Wang Z., Xiang L., Shao J., Yuan Z. (2006) The 3’ CCACCA sequence of tRNAAla(UGC) is the motif that is important in inducing Th1-like immune response, and this motif can be recognized by Toll-like receptor 3. Clin. Vaccine Immunol. 13, 733-739.PubMedCrossRefGoogle Scholar
  78. Warner N.Z, Greidinger E.L. (2004) Patients with antibodies to both PmScl and dsDNA. J. Rheumatol. 31, 2169-2174.PubMedGoogle Scholar
  79. Weickmann J.L., Glitz D.G. (1982) Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J. Biol. Chem. 257(15):8705-8710.PubMedGoogle Scholar
  80. Yamasaki Y., Honkanen-Scott M., Hernandez L., Ikeda K., Barker T., Bubb M.R., Narain S., Richards H.B., Chan E.K., Reeves W.H., Satoh M. (2006) Nucleolar staining cannot be used as a screening test for the scleroderma marker anti-RNA polymerase I/III antibodies. Arthritis Rheum. 54:3051-6.PubMedCrossRefGoogle Scholar
  81. Yang J.M., Hildebrandt B., Luderschmidt C., Pollard K.M. (2003) Human scleroderma sera contain autoantibodies to protein components specific to the U3 small nucleolar RNP complex. Arthritis Rheum. 48, 210-217.PubMedCrossRefGoogle Scholar
  82. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y.M., Gale M. Jr., Akira S., Yonehara S., Kato A., Fujita T. (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851-2858.PubMedGoogle Scholar
  83. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730-737.PubMedCrossRefGoogle Scholar
  84. Young S.L., Lyddon T.D., Jorgenson R.L., Misfeldt M.L. (2004) Expression of Toll-like receptors in human endometrial epithelial cells and cell lines. Am J Reprod Immunol. 52, 67-73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Eric L. Greidinger
    • 1
  1. 1.Division of RheumatologyMiami Department of Veterans Affairs Medical Center and University of Miami Miller School of MedicineMiami

Personalised recommendations