Advertisement

Murine CR1/2 Targeted Antigenized Single-Chain Antibody Fragments Induce Transient Low Affinity Antibodies and Negatively Influence an Ongoing Immune Response

  • József Prechl
  • Eszter Molnár
  • Zsuzsanna Szekeres
  • Andrea Isaák
  • Krisztián Papp
  • Péter Balogh
  • Anna Erdei
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)

Abstract

We have generated a single-chain antibody which recognizes murine CR1/2 and carries a genetically fused influenza hemagglutinin derived peptide. Theoretically such a construct is able to crosslink the B cell antigen receptor and CR1/2 on peptide specific B cells. The construct was able to reach its CR1/2 positive target cells, yet intraperitoneal delivery of the construct elicited an IgM response only slightly exceeding that induced by the free peptide. Providing T cell help by the injection of peptide specific lymphocytes did not alter the response in essence, that is anti-peptide IgG was not detectable even after booster immunizations. When used as a booster vaccine following injection of the peptide in adjuvant, the construct even inhibited the development of IgG1 and IgG3 anti-peptide antibodies.

These data indicate that although targeting of antigen to CR1/2 on B cells can enhance transient proliferation or differentiation of antigen specific B cells it cannot induce strong, longlasting humoral immune responses. Furthermore, CR1/2 targeting constructs may negatively influence an ongoing immune reaction.

Keywords

Humoral Immune Response Complement Receptor Affinity Maturation Booster Immunization Cell Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahearn, J.M., Fischer, M.B., Croix, D., Goerg, S., Ma, M., Xia, J., Zhou, X., Howard, R.G., Rothstein, T.L., Carroll, M.C., 1996. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity. 4, 251-262.PubMedCrossRefGoogle Scholar
  2. Applequist, S.E., Dahlstrom, J., Jiang, N., Molina, H., Heyman, B., 2000. Antibody production in mice deficient for complement receptors 1 and 2 can be induced by IgG/Ag and IgE/Ag, but not IgM/Ag complexes. J. Immunol. 165, 2398-2403.PubMedGoogle Scholar
  3. Baiu, D.C., Prechl, J., Tchorbanov, A., Molina, H.D., Erdei, A., Sulica, A., Capel, P.J., Hazenbos, W.L., 1999. Modulation of the humoral immune response by antibody-mediated antigen targeting to complement receptors and Fc receptors. J. Immunol. 162, 3125-3130.PubMedGoogle Scholar
  4. Chen, Z., Koralov, S.B., Gendelman, M., Carroll, M.C., Kelsoe, G., 2000. Humoral immune responses in Cr2-/- mice: enhanced affinity maturation but impaired antibody persistence. J. Immunol. 164, 4522-4532.PubMedGoogle Scholar
  5. Croix, D.A., Ahearn, J.M., Rosengard, A.M., Han, S., Kelsoe, G., Ma, M., Carroll, M.C., 1996. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857-1864.PubMedCrossRefGoogle Scholar
  6. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C., Fearon, D.T., 1996. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science {%}19;271, 348-350.CrossRefGoogle Scholar
  7. Fearon, D.T., Carroll, M.C., 2000. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393-422.PubMedCrossRefGoogle Scholar
  8. Gaither, T.A., Vargas, I., Inada, S., Frank, M.M., 1987. The complement fragment C3d facilitates phagocytosis by monocytes. Immunology 62, 405-411.PubMedGoogle Scholar
  9. Haas, K.M., Hasegawa, M., Steeber, D.A., Poe, J.C., Zabel, M.D., Bock, C.B., Karp, D.R., Briles, D.E., Weis, J.H., Tedder, T.F., 2002. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity. 17, 713-723.PubMedCrossRefGoogle Scholar
  10. Haas, K.M., Toapanta, F.R., Oliver, J.A., Poe, J.C., Weis, J.H., Karp, D.R., Bower, J.F., Ross, T.M., Tedder, T.F., 2004. Cutting edge: C3d functions as a molecular adjuvant in the absence of CD21/35 expression. J. Immunol. 172, 5833-5837.PubMedGoogle Scholar
  11. Lou, D., Kohler, H., 1998. Enhanced molecular mimicry of CEA using photoaffinity crosslinked C3d peptide. Nat. Biotechnol. 16, 458-462.PubMedCrossRefGoogle Scholar
  12. Molina, H., Holers, V.M., Li, B., Fung, Y., Mariathasan, S., Goellner, J., Strauss-Schoenberger, J., Karr, R.W., Chaplin, D.D., 1996. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. U. S. A 93, 3357-3361.CrossRefGoogle Scholar
  13. Prechl, J., Tchorbanov, A., Horvath, A., Baiu, D.C., Hazenbos, W., Rajnavolgyi, E., Kurucz, I., Capel, P.J., Erdei, A., 1999. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies. Immunopharmacology 42, 159-165.PubMedCrossRefGoogle Scholar
  14. Qin, D., Wu, J., Carroll, M.C., Burton, G.F., Szakal, A.K., Tew, J.G., 1998. Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses. J. Immunol. 161, 4549-4554.PubMedGoogle Scholar
  15. Rajnavolgyi, E., Horvath, A., Gogolak, P., Toth, G.K., Fazekas, G., Fridkin, M., Pecht, I., 1997. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites. Eur. J. Immunol. 27, 3105-3114.PubMedCrossRefGoogle Scholar
  16. Ross, T.M., Xu, Y., Bright, R.A., Robinson, H.L., 2000. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat. Immunol. 1, 127-131.PubMedCrossRefGoogle Scholar
  17. Ross, T.M., Xu, Y., Green, T.D., Montefiori, D.C., Robinson, H.L., 2001. Enhanced avidity maturation of antibody to human immunodeficiency virus envelope: DNA vaccination with gp120-C3d fusion proteins. AIDS Res. Hum. Retroviruses 17, 829-835.PubMedCrossRefGoogle Scholar
  18. Villiers, M.B., Villiers, C.L., Laharie, A.M., Marche, P.N., 1999. Amplification of the antibody response by C3b complexed to antigen through an ester link. J. Immunol. 162, 3647-3652.PubMedGoogle Scholar
  19. Whipple, E.C., Shanahan, R.S., Ditto, A.H., Taylor, R.P., Lindorfer, M.A., 2004. Analyses of the in vivo trafficking of stoichiometric doses of an anti-complement receptor 1/2 monoclonal antibody infused intravenously in mice. J. Immunol. 173, 2297-2306.PubMedGoogle Scholar
  20. Wu, X., Jiang, N., Fang, Y.F., Xu, C., Mao, D., Singh, J., Fu, Y.X., Molina, H., 2000. Impaired affinity maturation in Cr2-/- mice is rescued by adjuvants without improvement in germinal center development. J. Immunol. 165, 3119-3127.PubMedGoogle Scholar
  21. Wykes, M., Pombo, A., Jenkins, C., MacPherson, G.G., 1998. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313-1319.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • József Prechl
    • 1
  • Eszter Molnár
    • 2
  • Zsuzsanna Szekeres
    • 2
  • Andrea Isaák
    • 2
  • Krisztián Papp
    • 2
  • Péter Balogh
    • 3
  • Anna Erdei
    • 1
    • 2
  1. 1.Research Group of the Hungarian Academy of Sciences at the Department of ImmunologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of ImmunologyEötvös Loránd University1117 BudapestHungary
  3. 3.Department of Immunology and BiotechnologyUniversity of Pécs7643, PécsHungary

Personalised recommendations