Immunity in Borreliosis with Special Emphasis on the Role of Complement

  • Kristina Nilsson Ekdahl
  • Anna J. Henningsson
  • Kerstin Sandholm
  • Pia Forsberg
  • Jan Ernerudh
  • Christina Ekerfelt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


Lyme Disease Borrelia Burgdorferi Lyme Borreliosis Erythema Migrans Lyme Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akin, E., McHugh, G. L., Flavell, R. A., Fikrig, E. and Steere, A. C. (1999). The immunoglobulin (IgG) antibody response to OspA and OspB correlates with severe and prolonged Lyme arthritis and the IgG response to P35 correlates with mild and brief arthritis. Infect Immun 67: 173-181.PubMedGoogle Scholar
  2. Alban, P. S., Johnson, P. W. and Nelson, D. R. (2000). Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology 146: 119-127.PubMedGoogle Scholar
  3. Alitalo, A., Meri, T., Comstedt, P., Jeffery, L., Tornberg, J., Strandin, T., Lankinen, H., Bergstrom, S., Cinco, M., Vuppala, S. R., Akins, D. R. and Meri, S. (2005). Expression of complement factor H binding immunoevasion proteins in Borrelia garinii isolated from patients with neuroborreliosis. Eur J Immunol 35(10): 3043-3053.PubMedCrossRefGoogle Scholar
  4. Alitalo, A., Meri, T., Lankinen, H., Seppälä, I., Ladhdenne, P., Hefty, P. S., Akins, D. and Meri, S. (2002). Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded Outer Surface Protein E paralogs. J Immunol 169: 3847-3853.PubMedGoogle Scholar
  5. Alitalo, A., Meri, T., Ramo, L., Jokiranta, T. S., Heikkila, T., Seppala, I. J., Oksi, J., Viljanen, M. and Meri, S. (2001). Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect Immun 69(6): 3685-91.PubMedCrossRefGoogle Scholar
  6. Anon (1997). Case definitions for infectious conditions under public health surveillance: Lyme disease (revisited 9/96). MMWR Morb Mortal Wkly Rep 46: 20-21.Google Scholar
  7. Asch, E. S. and Bujac, M. (1994). Lyme disease: an infectious and postinfectious syndrome. J Rheumatol 21: 454-461.PubMedGoogle Scholar
  8. Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., Friese, M., Schroder, R., Deckert, M., Schmidt, S., Ravid, R. and Rajewsky, K. (2000). Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3): 393-404.PubMedCrossRefGoogle Scholar
  9. Baig, S., Olsson, T., Höjeberg, B. and Link, H. (1986). Cells secreting antibodies to myelin basic protein in cerebrospinal fluid of patients with Lyme neuroborreliosis. Neurology 41: 581-587.Google Scholar
  10. Balmelli, T. and Piffaretti, J. C. (1995). Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146(4): 329-340.PubMedCrossRefGoogle Scholar
  11. Barbour, A. G. (1984). Immunochemical analysis of Lyme disease spirochetes. Yale Journal of Biological Medicine 57: 581-586.Google Scholar
  12. Barthold, S. W. and deSouza, M. (1995). Exacerbation of Lyme arthritis in beige mice. J Infect Dis 172: 772-784.Google Scholar
  13. Barthold, S. W., deSouza, M. and Feng, S. (1996). Serum-mediated resolution in Lyme-arthritis in mice. Lab Invest 74: 57-67.PubMedGoogle Scholar
  14. Barton, G. M. and Medzhitov, R. (2003). Toll-like receptor signaling pathways. Science 300: 1524-1525.PubMedCrossRefGoogle Scholar
  15. Benach, J. L., Bosler, E. M., Hanrahan, J. P., Coleman, J. L., Habicht, G. S., Bast, T. F., Cameron, D. J., Ziegler, J. L., Barbour, A. G., Burgdorfer, W., Edelman, E. and Kaslow, R. A. (1983). Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308: 740-742.PubMedCrossRefGoogle Scholar
  16. Berglund, J., Eitrem, R., Ornstein, K., Lindberg, A., Ringer, A., Elmrud, H., Carlsson, M., Runehagen, A., Svanborg, C. and Norrby, R. (1995). An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333(20): 1319-1327.PubMedCrossRefGoogle Scholar
  17. Berglund, J., Stjernberg, L., Ornstein, K., Tykesson-Joelsson, K. and Walter, H. (2002). 5-y Follow-up study of patients with neuroborreliosis. Scand J Infect Dis 34(6): 421-425.PubMedCrossRefGoogle Scholar
  18. Blom, A. M. (2002). Structural and functional studies of complement inhibitor C4b-binding protein. Biochem Soc Trans 30(Pt 6): 978-982.PubMedCrossRefGoogle Scholar
  19. Bockenstedt, L. K., Barthold, S., Deponte, K., Marcantonio, N. and Kantor, F. S. (1993). Borrelia burgdorferi infection and immunity in mice deficient in the fifth component of complement. Infect Immun 61(5): 2104-2107.PubMedGoogle Scholar
  20. Brade, V., Kleber, I. and Acker, G. (1992). Differences of two Borrelia burgdorferi strains in complement activation and serum resistance. Immunobiology 185(5): 453-465.PubMedGoogle Scholar
  21. Breitner-Ruddock, S., Wurzner, R., Schulze, J. and Brade, V. (1997). Heterogeneity in the complement-dependent bacteriolysis within the species of Borrelia burgdorferi. Med Microbiol Immunol (Berl) 185(4): 253-260.CrossRefGoogle Scholar
  22. Brorson, O. and Brorson, S. H. (1998). A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. Apmis 106(12): 1131-1141.PubMedCrossRefGoogle Scholar
  23. Brown, J. P., Zachary, J. F., Teuscher, C. and Weis, J. J. (1999). Dual role of interleukin-10 in murine Lyme disease: regulation of arthritis severity and host defence. Infect Immun 67: 5142-5150.PubMedGoogle Scholar
  24. Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E. and Davis, J. P. (1982). Lyme disease - a tick-borne spirochetosis? Science 216: 1317-1319.PubMedCrossRefGoogle Scholar
  25. Cordes, F. S., Kraiczy, P., Roversi, P., Simon, M. M., Brade, V., Jahraus, O., Wallis, R., Goodstadt, L., Ponting, C. P., Skerka, C., Zipfel, P. F., Wallich, R. and Lea, S. M. (2006). Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi. Int J Med Microbiol 296 Suppl 40: 177-184.CrossRefGoogle Scholar
  26. Duffy, J. (1990). Lyme disease. Ann Allergy 65(1): 1-13.PubMedGoogle Scholar
  27. Dunlop, L. R., Oehlberg, K. A., Reid, J. J., Avci, D. and Rosengard, A. M. (2003). Variola virus immune evasion proteins. Microbes Infect 5(11): 1049-1056.PubMedCrossRefGoogle Scholar
  28. Ekerfelt, C., Ernerudh, J., Bunikis, J., Vrethem, M., Aagesen, J., Roberg, M., Bergström, S. and Forsberg, P. (1997). Compartmentalization of antigen specific cytokine responses to the central nervous system in CNS borreliosis: Secretion of IFN-γ predominates over IL-4 secretion in response to outer surface proteins of Lyme disease Borrelia spirochetes. J Neuroimmunol 79: 155-162.PubMedCrossRefGoogle Scholar
  29. Ekerfelt, C., Ernerudh, J., Forsberg, P. and Bergström, S. (1998). Augmented intrathecal secretion of interferon-g in response to Borrelia garinii in neuroborreliosis. J Neuroimmunol 89: 177-181.PubMedCrossRefGoogle Scholar
  30. Ekerfelt, C., Forsberg, P., Svenvik, M., Roberg, M., Bergström, S. and Ernerudh, J. (1999). Asymptomatic Borreliaseropositive individuals display the same incidence ofBorrelia specific interferon-gamma (IFN-γ )- secreting cells in blood as patients with clinical Borrelia infection. Clin Exp Immunol 115: 498-502.PubMedCrossRefGoogle Scholar
  31. Ekerfelt, C., Jarefors, S., Tynngård, N., Hedlund, M., Sander, B., Bergström, S., Forsberg, P. and Ernerudh, J. (2003). Phenotypes indicating cytolytic properties of Borrelia-specific interferon-g secreting cells in chronic Lyme neuroborreliosis. J Neuroimmunol 145: 115-126.PubMedCrossRefGoogle Scholar
  32. Ekerfelt, C., Masreliez, C., Svenvik, M., Ernerudh, J., Roberg, M. and Forsberg, P. (2001). Antibodies and T-cell reactivity to Borrelia burgdorferi in an asymptomatic population: a study of healthy blood donors in an inland town district in the south-east of Sweden. Scand J Infect Dis 33(11): 806-808.PubMedCrossRefGoogle Scholar
  33. Forsberg, P., Ernerudh, J., Ekerfelt, C., Roberg, M., Vrethem, M. and Bergstrom, S. (1995). The outer surface proteins of Lyme disease borrelia spirochetes stimulate T cells to secrete interferon-gamma (IFN-gamma): diagnostic and pathogenic implications. Clin Exp Immunol 101(3): 453-460.PubMedCrossRefGoogle Scholar
  34. Francis, K., Van Beek, J., Canova, C., Neal, J. W. and Gasque, P. (2003). Innate immunity and brain inflammation: the key role of complement. Expert Rev Mol Med 2003: 1-19.PubMedCrossRefGoogle Scholar
  35. Frey, M., Jaulhac, B., Piemont, Y., Marcellin, L., Boohs, P. M., Vautravers, P., Jesel, M., Kuntz, J. L., Monteil, H. and Sibilia, J. (1998). Detection of Borrelia burgdorferi DNA in muscle of patients with chronic myalgia related to Lyme disease. Am J Med 104(6): 591-594.PubMedCrossRefGoogle Scholar
  36. Fung, B. P., McHugh, G. L., Leong, J. M. and Steere, A. C. (1994). Humoral immune response to outer surface protein C of Borrelia burgdorferi in Lyme disease: role of the immunoglobulin M response in the serodiagnosis of early infection. Infect Immun 62(8): 3213-3221.PubMedGoogle Scholar
  37. Garcia, R. C., Murgia, R. and Cinco, M. (2005). Complement receptor 3 binds the Borrelia burgdorferi outer surface proteins OspA and OspB in an iC3b-independent manner. Infect Immun 73(9): 6138-6142.PubMedCrossRefGoogle Scholar
  38. Garcia-Monco, J. C. and Benach, J. L. (1995). Lyme neuroborreliosis. Ann Neurol 37(6): 691-702.PubMedCrossRefGoogle Scholar
  39. Gross, D. M., Steere, A. C. and Huber, B. T. (1998). T helper 1 response is dominant and localized to the synovial fluid in patients with Lyme arthritis. J Immunol 160(2): 1022-1028.PubMedGoogle Scholar
  40. Grusell, M., Widhe, M. and Ekerfelt, C. (2002). Increased expression of the Th1-inducing cytokines interleukin-12 and interleukin-18 in cerebrospinal fluid but not in sera from patients with Lyme neuroborreliosis. Journal of Neuroimmunology 131: 173-178.PubMedCrossRefGoogle Scholar
  41. Harboe, M., Ulvund, G., Vien, L., Fung, M. and Mollnes, T. E. (2004). The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138(3): 439-446.PubMedCrossRefGoogle Scholar
  42. Hartmann, K., Corvey, C., Skerka, C., Kirschfink, M., Karas, M., Brade, V., Miller, J. C., Stevenson, B., Wallich, R., Zipfel, P. F. and Kraiczy, P. (2006). Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol 61(5): 1220-1236.PubMedCrossRefGoogle Scholar
  43. Hellwage, J., Meri, T., Heikkila, T., Alitalo, A., Panelius, J., Lahdenne, P., Seppala, I. J. and Meri, S. (2001). The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276(11): 8427-8435.PubMedCrossRefGoogle Scholar
  44. Hemmer, B., Gran, B., Zhao, Y., Marques, A., Pascal, J., Tzou, A., Kondo, T., Cortese, I., Bielekova, B., Straus, S. E., McFarland, H. F., Houghten, R., Simon, R., Pinilla, C. and Martin, R. (1999). Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 5(12): 1375-1382PubMedCrossRefGoogle Scholar
  45. Henningsson, A. J., Ernerudh, J., Sandholm, K., Carlsson, S.-A., Granlund, H., Jansson, C., Nyman, D., Forsberg, P. and Nilsson Ekdahl, K. (2006). Complement activation in Lyme neuroborreliosis – increased levels of C1q and C3a in cerebrospinal fluid indicate complement activation in the CNS. J Neuroimmunol in press.Google Scholar
  46. Hirschfeld, M., Kirschning, C. J., Schwandner, R., Wesche, H., Weis, J. H., Wooten, R. M. and Weis, J. J. (1999). Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163(5): 2382-1286.PubMedGoogle Scholar
  47. Huppertz, H. I., Bohme, M., Standaert, S. M., Karch, H. and Plotkin, S. A. (1999). Incidence of Lyme borreliosis in the Wurtzburg region of Germany. Eur J Clin Microbiol Infect Dis 18: 697-703.PubMedCrossRefGoogle Scholar
  48. Jacobsen, M., Cepok, S., Quak, E., Happel, M., Gaber, R., Ziegler, A., Schock, S., Oertel, W. H., Sommer, N. and Hemmer, B. (2002). Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125(Pt 3): 538-550.PubMedCrossRefGoogle Scholar
  49. Jarefors, S., Janefjord, C. K., Forsberg, P., Jenmalm, M. C. and Ekerfelt, C. (2006). Decreased up-regulation of the interleukin-12Rb2-chain and interferon-g secretion and increasde number of forkhead box P3-expressing cells in patients with a history of chronic Lyme borreliosis compared with asymptomatic individuals. Clin Exp Immunol In press.Google Scholar
  50. Jarefors, S., Karlsson, M., Forsberg, P., Eliasson, I., Ernerudh, J. and Ekerfelt, C. (2005). Reduced numbers of interleukin-12 secreting cells in patients with Lyme borreliosis previously exposed to Anaplasma phagocytophilum. Clin Exp Immunol 143: 322-328.CrossRefGoogle Scholar
  51. Johnson, L. and Stricker, R. B. (2004). Treatment of Lyme disease: a medicolegal assessment. Expert Rev Anti Infect Ther 2: 533-557.PubMedCrossRefGoogle Scholar
  52. Johnson, R. C., Schmid, G. P., Hyde, F. W., Steigerwalt, A. G. and Brenner, D. J. (1984). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34: 496-497.CrossRefGoogle Scholar
  53. Kaiser, R. (1994). Variable CSF findings in early and late Lyme neuroborreliosis: a follow-up study in 47 patients. J Neurology 242: 26-36.CrossRefGoogle Scholar
  54. Kalish, R. A., Leong, J. M. and Steere, A. C. (1993). Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun 61(7): 2774-2779.PubMedGoogle Scholar
  55. Kalish, R. A., Leong, J. M. and Steere, A. C. (1995). Early and late antibody responses to full-length and truncated constructs of outer surface protein A of Borrelia burgdorferi in Lyme disease. Infect Immun 63(6): 2228-2235.PubMedGoogle Scholar
  56. Kang, I., Barthold, S. W., Persing, D. H. and Bockenstedt, L. K. (1997). T-helper-cell cytokines in the early evolution of murine Lyme arthritis. Infect Immun 65(8): 3107-3111.PubMedGoogle Scholar
  57. Kersten, A., Poitschek, C., Rauch, S. and Aberer, E. (1995). Effects of penicilline, ceftriaxone, and doxycycline on the morphology of Borrelia burgdorferi. Agents Chemother 39: 1127-1133.Google Scholar
  58. Korenberg, E. I., Gorban, L. Y., Kovalevskii, Y. V., Frizen, V. I. and Karanov, A. S. (2001). Risk for human tick-borne encephalitis, borreliosis and double infection in the pre-Ural region of Russia. Emerg Infect Dis 7: 459-462.PubMedGoogle Scholar
  59. Kraiczy, P., Hellwage, J., Skerka, C., Becker, H., Kirschfink, M., Simon, M. M., Brade, V., Zipfel, P. F. and Wallich, R. (2004). Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J Biol Chem 279(4): 2421-2429.PubMedCrossRefGoogle Scholar
  60. Kraiczy, P., Hunfeld, K. P., Breitner-Ruddock, S., Wurzner, R., Acker, G. and Brade, V. (2000). Comparison of two laboratory methods for the determination of serum resistance in Borrelia burgdorferi isolates. Immunobiology 201(3–4): 406-419.PubMedGoogle Scholar
  61. Kraiczy, P., Skerka, C., Brade, V. and Zipfel, P. F. (2001). Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun 69(12): 7800-7809.PubMedCrossRefGoogle Scholar
  62. Kraiczy, P., Skerka, C., Kirschfink, M., Zipfel, P. F. and Brade, V. (2001). Mechanism of complement resistance of pathogenic Borrelia burgdorferi isolates. Int Immunopharmacol 1(3): 393-401.PubMedCrossRefGoogle Scholar
  63. Kraiczy, P., Skerka, C., Kirschfink, M., Zipfel, P. F. and Brade, V. (2002). Immune evasion of Borrelia burgdorferi: insufficient killing of the pathogens by complement and antibody. Int J Med Microbiol 291 Suppl 33: 141-146.CrossRefGoogle Scholar
  64. Lawrenz, M. B., Wooten, R. M., Zachary, J. F., Drouin, S. M., Weis, J. J., Wetsel, R. A. and Norris, S. J. (2003). Effect of complement component C3 deficiency on experimental Lyme borreliosis in mice. Infect Immun 71(8): 4432-4440.PubMedCrossRefGoogle Scholar
  65. Liang, F. T., Jacobs, M. B., Bowers, L. C. and Philipp, M. T. (2002). An immune evasion mechanism for spirochetal persistance in the host. J Exp Med 195: 415-422.PubMedCrossRefGoogle Scholar
  66. Liang, F. T., Nelson, F. K. and Fikrig, E. (2002). Molecular adaption of Borrelia in the murine host. J Exp Med 196: 275-280.PubMedCrossRefGoogle Scholar
  67. Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D. and Golenbock, D. T. (1999). Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274(47): 33419-33425.PubMedCrossRefGoogle Scholar
  68. Lindahl, G., Sjöbring, U. and Johnsson, E. (2000). Human complement regulators: a major target for pathogenic microorganisms. Curr Opin Immunol 12(1): 44-51.PubMedCrossRefGoogle Scholar
  69. Ma, Y., Seiler, K. P., Tai, K. F., Yang, L., Woods, M. and Weis, J. J. (1994). Outer surface lipoproteins of Borrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway. Infect Immun 62(9): 3663-3671.PubMedGoogle Scholar
  70. Ma, Y. and Weis, J. J. (1993). Borrelia burgdorferi outer surface lipoproteins OspA and OspB possess B-cell mitogenic and cytokine-stimulatory properties. Infect Immun 61: 3843-3853.PubMedGoogle Scholar
  71. Montgomery, R. R. and Malawista, S. E. (1994). Borrelia burgdorferi and the macrophage: routine annihilation but occasional haven? Parasitol Today 10(4): 154-157.PubMedCrossRefGoogle Scholar
  72. Morrison, T. B., Weis, J. H. and Weis, J. J. (1997). Borrelia burgdorferi outer surface protein A (OspA) activates and primes human neutrophils. J Immunol 158(10): 4838-4845.PubMedGoogle Scholar
  73. Muellegger, R. R., McHugh, G., Ruthazer, R., Binder, B., Kerl, H. and Steere, A. C. (2000). Differential expression of cytokine mRNA in skin specimens from patients with erythema migrans or acrodermatitis chronica atrophicans. J Invest Dermatol 115: 1115-1123.CrossRefGoogle Scholar
  74. Nocton, J. J. and Steere, A. C. (1995). Lyme disease. Adv intern med 40: 69-115.PubMedGoogle Scholar
  75. Noppa, L. (1998). Membrane proteins and periplasmic flagella of Borrelia spirochetes. (PhD thesis ) Umeå University, Umeå, SwedenGoogle Scholar
  76. Norgard, M. V., Arndt, L. L., Akins, D. R., Curetty, L. L., Harrich, D. A. and Radolf, J. D. (1996). Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a pathway distinct from that of lipopolysaccharide but involves the transcriptional activator NF-kappa B. Infect Immun 64(9): 3845-3852.PubMedGoogle Scholar
  77. Oksi, J., Kalimo, H., Marttila, R. J., Marjamaki, M., Sonninen, P., Nikoskelainen, J. and Viljanen, M. K. (1996). Inflammatory brain changes in Lyme borreliosis. A report on three patients and review of literature. Brain 119 (Pt 6): 2143-2154.PubMedCrossRefGoogle Scholar
  78. Oksi, J., Marjamaki, M., Nikoskelainen, J. and Viljanen, M. K. (1999). Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis. Ann Med 31: 225-232.PubMedGoogle Scholar
  79. Oksi, J., Savolainen, J., Pene, J., Bousquet, J., Laippala, P. and Viljanen, M. K. (1996). Decreased interleukin-4 and increased gamma interferon production by peripheral blood mononuclear cells of patients with Lyme borreliosis. Infect Immun 64(9): 3620-3623.PubMedGoogle Scholar
  80. Ornstein, K., Berglund, J., Bergström, S., Norrby, R. and Barbour, A. G. (2002). Three major Lyme Borrelia genospecies (Borrelia burgdorferi sensu stricto, B. afzelii and B. gariniii) identified by PCR in cerebrospinal fluid from patients with neuroborreliosis in Sweden. Scand J Infect Dis 34: 341-346.PubMedCrossRefGoogle Scholar
  81. Oschmann, P., Dorndorf, W., Hornig, C., Schafer, C., Wellensiek, H. J. and Pflughaupt, K. W. (1998). Stages and syndromes of neuroborreliosis. J Neurol 245(5): 262-272.PubMedCrossRefGoogle Scholar
  82. Pachner, A. R. (1988). Borrelia burgdorferi in the nervous system: the new “great imitator”. Ann N Y Acad Sci 539: 56-64.PubMedCrossRefGoogle Scholar
  83. Pausa, M., Pellis, V., Cinco, M., Giulianini, P. G., Presani, G., Perticarari, S., Murgia, R. and Tedesco, F. (2003). Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule. J Immunol 170(6): 3214-3222.PubMedGoogle Scholar
  84. Pena, C. A. and Strickland, G. T. (1999). Incidence rates of Lyme disease in Maryland: 1993 through 1996. Md Med J 48: 68-73.PubMedGoogle Scholar
  85. Preac-Mursic, V., Weber, K., Pfister, H. W., Wilske, B., Gross, B., Bauman, A. and Prokop, B. (1989). Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection 17: 355-359.PubMedCrossRefGoogle Scholar
  86. Richter, D., Schlee, D. B., Algower, R. and Matuschka, F. R. (2004). Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp nov., with its hosts in Central Europe. Appl Environ Micrrobiol 70: 6414-6419.CrossRefGoogle Scholar
  87. Roessner, K., Trivedi, H., Gaur, L., Howard, D., Aversa, J., Cooper, S. M., Sigal, L. H. and Budd, R. C. (1998). Biased T-cell antigen receptor repertoire in Lyme arthritis. Infect Immun 66(3): 1092-1099.PubMedGoogle Scholar
  88. Rossmann, E., Kitiratschky, V., Hofmann, H., Kraiczy, P., Simon, M. M. and Wallich, R. (2006). BbCRASP-1 of the Lyme disease spirochetes is expressed in humans and induces antibody responses restricted to non-denatured structural determinants. Infect Immun in press.Google Scholar
  89. Seiler, K. P. and Weis, J. J. (1996). Immunity to Lyme disease: protection, pathology and persistence. Curr Opin Immunol 8(4): 503-509.PubMedCrossRefGoogle Scholar
  90. Sigal, L. H. (1997). Immunologic mechanisms in Lyme neuroborreliosis: the potential role of autoimmunity and molecular mimicry. Semin Neurol 17(1): 63-68.PubMedCrossRefGoogle Scholar
  91. Singh, S. K. and Girshick, H. J. (2006). Toll-like receptors in Borrelia burgdorferi-induced inflammation. Clin Microbiol Infect 12: 705-717.PubMedGoogle Scholar
  92. Sjöwall, J., Carlsson, A., Vaarala, O., Bergström, S., Ernerudh, J., Forsberg, P. and Ekerfelt, C. (2005). Innate immune responses in Lyme borreliosis: enhanced tumour necrosis factor-a and interleukin-12 in asymptomatic individuals in response to live spirochetes. Clin Exp Immunol 141: 89-98.PubMedCrossRefGoogle Scholar
  93. Stanek, G., Satz, N., Strle, F. and Wilske, B. (1993). Epidemiology of Lyme borreliosis. In:. K. Weber and W. Burgdorfer (Eds.), Aspects of Lyme borreliosis. Springer-Verlag, Berlin, pp 358-370.Google Scholar
  94. Stanek, G. and Strle, F. (2003). Lyme borreliosis. Lancet 362(9396): 1639-47.PubMedCrossRefGoogle Scholar
  95. Steere, A. C. (2001). Lyme disease. N Engl J Med 345: 115-125.PubMedCrossRefGoogle Scholar
  96. Steere, A. C., Grodzicki, R. L., Kornblatt, A. N., Craft, J. E., Barbour, A. G., Burgdorfer, W., Schmid, G. P., Johnson, E. and Malawista, S. E. (1983). The spirochetal etiology of Lyme disease. N Engl J Med 308: 733-740.PubMedCrossRefGoogle Scholar
  97. Steere, A. C., Malawista, S. E., Hardin, J. A., Ruddy, S., Askenase, P. W. and Andiman, W. A. (1977). Erythema chronicum migrans and Lyme arthritis: the enlarging clinical spectrum. Ann Intern Med 86: 685-698.PubMedGoogle Scholar
  98. Steere, A. C., Sikand, V. K., Meurice, F., Parenti, D. L., Fikrig, E., Schoen, R. T., Nowakowski, J., Schmid, C. H., Laukamp, S., Buscarino, C. and Krause, D. S. (1998). Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 1998: 209-215.CrossRefGoogle Scholar
  99. Stricker, R. B., Lautin, A. and Burrascano, J. J. (2005). Lyme disease: point/counterpoint. Expert Rev Anti Infect Ther 3(2): 155-165.PubMedCrossRefGoogle Scholar
  100. Stricker, R. B. and Phillips, S. E. (2003). Lyme disease without erythema migrans: cause for concern? Am J Med 115: 72.PubMedCrossRefGoogle Scholar
  101. Strle, F. (1999). Lyme borreliosis in Slovenia. Zentralbl Bakteriol 289: 634-652.Google Scholar
  102. Thomas, V., Anguita, J., Barthold, S. W. and Fikrig, E. (2001). Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 69(5): 3359-3371.PubMedCrossRefGoogle Scholar
  103. van Dam, A. P., Oei, A., Jaspars, R., Fijen, C., Wilske, B., Spanjaard, L. and Dankert, J. (1997). Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun 65(4): 1228-36.PubMedGoogle Scholar
  104. Vrethem, M., Hellblom, L., Widlund, M., Ahl, M., Danielsson, O., Ernerudh, J. and Forsberg, P. (2002). Chronic symptoms are common in patients with neuroborreliosis – a questionnaire follow-up study. Acta Neurol Scand 106(4): 205-208.PubMedCrossRefGoogle Scholar
  105. Wang, G., Ma, Y., Buyuk, A., McClain, S., Weis, J. J. and Schwarz, I. (2004). Impaired host defence to infection and Toll-like receptor 2-independent killing of Borrelia burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice. FEMS Microbiol Lett 231: 219-225.PubMedCrossRefGoogle Scholar
  106. Wang, G., Ojaimi, C., Wu, H., Saksenberg, V., Iyer, R., Liveris, D., McClain, S. A., Wormser, G. P. and Schwartz, I. (2002). Disease severity in a murine model of lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 186(6): 782-791.PubMedCrossRefGoogle Scholar
  107. Wang, G., vanDam, A. P. and Dankert, J. (1999). Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with Lyme borreliosis. J Clin Microbiol 37: 3025-3028.PubMedGoogle Scholar
  108. Wang, G., vanDam, A. P., Schwartz, I. and Dankert, J. (1999). Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12: 633-653.PubMedGoogle Scholar
  109. Wang, W. Z., Fredrikson, S., Sun, J. B. and Link, H. (1995). Lyme neuroborreliosis: evidence for persistent up-regulation of Borrelia burgdorferi-reactive cells secreting interferon-gamma. Scand J Immunol 42(6): 694-700.PubMedCrossRefGoogle Scholar
  110. Weigelt, W., Schneider, T. and Lange, R. (1992). Sequence homology between spirochaete flagellin and human myelin basic protein. Immunol Today 13(7): 279-280.PubMedCrossRefGoogle Scholar
  111. Weis, J. J., McCracken, B. A., Ma, Y., Fairbairn, D., Roper, R. J., Morrison, T. B., Weis, J. H., Zachary, J. F., Doerge, R. W. and Teuscher, C. (1999). Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 162: 948-956.PubMedGoogle Scholar
  112. Widhe, M., Ekerfelt, C., Forsberg, P., Bergstrom, S. and Ernerudh, J. (1998). IgG subclasses in Lyme borreliosis: a study of specific IgG subclass distribution in an interferon-gamma-predominated disease. Scand J Immunol 47(6): 575-581.PubMedGoogle Scholar
  113. Widhe, M., Jarefors, S., Ekerfelt, C., Vrethem, M., Bergström, S., Forsberg, P. and Ernerudh, J. (2004). Borrelia specific IFN-γ and IL-4 secretion in blood and CSF during the course of human Lyme borreliosis: relation to clinical outcome. J Infect Dis 189: 1881-1891.PubMedCrossRefGoogle Scholar
  114. Widhe, M. E. A., Grusell, M., Ekerfelt, C., Vrethem, M., Forsberg, P. and Ernerudh, J. (2002). Cytokines in Lyme borreliosis: Lack of early TNFα and TGFβ 1 responses are associated with chronic neuroborreliosis. Immunology 107: 46-55.PubMedCrossRefGoogle Scholar
  115. Wooten, R. M., Ma, Y., Yoder, R. A., Brown, J. P., Weis, J. H., Zachary, J. F., Kirschning, C. J. and Weis, J. J. (2002). Toll-like receptor 2 is required for innate, but not acquired, host defense to Borreliaburgdorferi. J Immunol 168: 348-355.PubMedGoogle Scholar
  116. Wooten, R. M., Modur, V. R., McIntyre, T. M. and Weis, J. J. (1996). Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells. J Immunol 157(10): 4584-4590.PubMedGoogle Scholar
  117. Yin, Z., Braun, J., Neure, L., Wu, P., Eggens, U., Krause, A., Kamradt, T. and Sieper, J. (1997). T cell cytokine pattern in the joints of patients with Lyme arthritis and its regulation by cytokines and anticytokines. Arthritis Rheum 40(1): 69-79.PubMedCrossRefGoogle Scholar
  118. Zeidner, N. S., Dolan, M. C., Massung R., Piesman, J. and Fish, D. (2000). Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL-2 and IFN gamma production and promotes an IL-4 response in C3H/HeJ mice. Parasite Immunol 22(11): 581-588.PubMedCrossRefGoogle Scholar
  119. Zipfel, P. F., Skerka, C., Hellwage, J., Jokiranta, S. T., Meri, S., Brade, V., Kraiczy, P., Noris, M. and Remuzzi, G. (2002). Factor H family proteins: on complement, microbes and human diseases. Biochem Soc Trans 30(Pt 6): 971-978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kristina Nilsson Ekdahl
    • 1
  • Anna J. Henningsson
    • 2
  • Kerstin Sandholm
    • 3
  • Pia Forsberg
    • 4
  • Jan Ernerudh
    • 4
  • Christina Ekerfelt
    • 4
  1. 1.Department of Oncology, Radiology and Clinical ImmunologyUniversity of UppsalaSweden
  2. 2.Department of Infectious DiseasesRyhov County HospitalSweden
  3. 3.Department of Chemistry and Biomedical SciencesUniversity of KalmarSweden
  4. 4.Department of Molecular and Clinical MedicineLinköping UniversitySweden

Personalised recommendations