The Exosporium of B.cereus Contains a Binding Site for gC1qR/p33: Implication in Spore Attachment and/or Entry

  • Berhane Ghebrehiwet
  • Lee Tantral
  • Mathew A. Titmus
  • Barbara J. Panessa-Warren
  • George T. Tortora
  • Stanislaus S. Wong
  • John B. Warren
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 598)


B.cereus, is a member of a genus of aerobic, gram-positive, spore-forming rod-like bacilli, which includes the deadly, B.anthracis. Preliminary experiments have shown that gC1qR binds to B.cereus spores that have been attached to microtiter plates. The present studies were therefore undertaken, to examine if cell surface gC1qR plays a role in B.cereus spore attachment and/or entry. Monolayers of human colon carcinoma (Caco-2) and lung cells were grown to confluency on 6 mm coverslips in shell vials with gentle swirling in a shaker incubator. Then, 2 μ l of a suspension of strain SB460 B.cereus spores (3x108/ml, in sterile water), were added and incubated (1-4 h; 360 C) in the presence or absence of anti-gC1qR mAb-carbon nanoloops. Examination of these cells by EM revealed that: (1) When B. cereus endospores contacted the apical Caco-2 cell surface, or lung cells, gClqR was simultaneously detectable, indicating upregulation of the molecule. (2) In areas showing spore contact with the cell surface, gClqR expression was often adjacent to the spores in association with microvilli (Caco-2 cells) or cytoskeletal projections (lung cells). (3) Furthermore, the exosporia of the activated and germinating spores were often decorated with mAb-nanoloops. These observations were further corroborated by experiments in which B.cereus spores were readily taken up by monocytes and neutrophils, and this uptake was partially inhibited by mAb 60.11, which recognizes the C1q binding site on gC1qR. Taken together, the data suggest a role, for gC1qR at least in the initial stages of spore attachment and/or entry.


Bacillus Cereus Malachite Green Single Walled Carbon Nanotubes Apical Surface FESEM Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G.G., Palermo, J. J., Schilling, J.D., Roth, R., Heuser, J., and Hultgren, S.J. (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105-107.PubMedCrossRefGoogle Scholar
  2. Beaman, T.C., Pankratz, H.S., and Gerhardt, P. (1971) Paracrystalline sheets reaggregated from solubilized exosporium of Bacillus cereus. J. Bacteriol 107, 320-324.PubMedGoogle Scholar
  3. Beecher, D.J., Pulido, J.S., Barney, N.P., and Wong, A.C.L. (1995) Extracellular virulence factors in Bacillus cereus endophthalmitis: Methods and implication of involvement of hemolysin BL. Infect Immun 63, 632-639.PubMedGoogle Scholar
  4. Bowen, W.R., Fenton, A.S., Lovitt, R.W., and Wright, C.J. (2002) The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and spinning disc technique. Biotechnol Bioeng 79, 170-179.Google Scholar
  5. Braun, L., Ghebrehiwet, B., and Cossart, P. (2000) gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 19, 1458-1466.PubMedCrossRefGoogle Scholar
  6. Callegan, M.C., Engel, L.S., Hill, J.M., and O’Callaghan, R.J. (1994) Corneal virulence of Staphylococcus aureus: Roles of alpha-toxin and protein A in corneal pathology. Infect Immun 62, 2478-2482.PubMedGoogle Scholar
  7. Chada, V.G., Sanstad, E.A., Wang, R., and Driks. A. (2003) Morphogenesis of bacillus spore surfaces. J. Bacteriol 185, 6255-6261.PubMedCrossRefGoogle Scholar
  8. Davey, R.T., and Tauber, W.B. (1987) Posttraumatic endophthalmitis: the emerging role of Bacillus cereus infection. Rev Infect Dis. 9 110-123.PubMedGoogle Scholar
  9. Driks, A., (2002) Maximum shields: the armor plating of the bacterial spore. Trends in Microbiol 10, 251-254.CrossRefGoogle Scholar
  10. Finlay, B.B., and Cossart, P. (1997). Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718-725.PubMedCrossRefGoogle Scholar
  11. Garcia-Patrone, M., and Tandecarz, J.S. (1995) A glycoprotein multimer from Bacillus thuringiensis sporangia: dissociation into subunits and sugar composition. Mol. Cell. Biochem 145, 29-37.PubMedCrossRefGoogle Scholar
  12. Ghebrehiwet, B., Lim, W., Peerschke, E.I.B., Willis, A.C., Hong, Y., and Reid, K.B.M. (1994) Isolation, cDNA cloning and overexpression of a 33 kDa cell surface glycoprotein which binds to the globular “heads” of C1q (gC1q-R). J Exp Med 179, 1809-1821.PubMedCrossRefGoogle Scholar
  13. Ghebrehiwet, B., Lim, B-L., Kumar, R., Feng, X., and Peerschke, E.I.B. (2001) gC1q-R/p33: a member of a new class of multifunctional and multicompartmental cellular proteins (MMCPs) is involved in inflammation and infection. Immunol Rev 180, 65-77.PubMedCrossRefGoogle Scholar
  14. Ghebrehiwet, B., Lu, P.D., Zhang, W., Lim, B-L., Eggleton, P., Leigh, L.E.A., Reid, K.B.M. and Peerschke, E.I.B. (1996). Identification of functional domains on gC1q-R, a cell surface protein, which binds to the globular “heads” of C1q, using monoclonal antibodies and synthetic peptides. Hybridoma 15, 333-342.PubMedCrossRefGoogle Scholar
  15. Gilmore, M.S. , Cruz-Rodz, A.L., Leimeister-Wachter, M., Kreft, J., and Goebel, W.A. (1989) Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: Nucleotide sequence and genetic linkage. J. Bacteriol 17, 744-753.Google Scholar
  16. Gould, G.W., and Dring, J.G. (1974) Mechanisms of spore heat resistance. In Adv Microbial Physiol (Rose A.H. and D.W. Tempest, eds) vol 11:pp137 Academic press, London.Google Scholar
  17. Harrington, D.J. (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64, 1885-1891.PubMedGoogle Scholar
  18. Helgason, E., Økstad, O.A. Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M. Hegna, I., KoltsØ, A-B. (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis?one species on the basis of genetic evidence. Appl Environm Microbiol 66, 2627-26230.CrossRefGoogle Scholar
  19. Koshikawa, T., Yamazaki, M., Yoshimi, M., Ogawa, S., Yamada, A., Watabe, K., and Torii, M. (1989) Surface hydrophobicity of spores of Bacillus species. J. Gen. Microbiol 135, 2717-2722.PubMedGoogle Scholar
  20. Matz, L.L., Beaman, T.C., and Gerhardt, P. (1970) Chemical composition of the exosporium from spores of B. cereus. J. Bacteriol 101(1): 196-201.PubMedGoogle Scholar
  21. Nguyen, T., Ghebrehiwet, B., and Peerschke, E.I.B. (2000) Staphylococcus aureus protein A recognizes platelet gC1q-R/p33: A novel mechanism for staphylococcal interactions with platelets. Infect Immun 84, 2061-2068.CrossRefGoogle Scholar
  22. O’Day, D.M., Smith, R.S., Gregg, C.R., Turnbull, P.C.B., Head, W.S., Ives, J.A., and Ho, P.C. (1981). The problem of Bacillus species with special emphasis on the virulence of Bacillus cereus. Ophthalmology 88, 833-838.PubMedGoogle Scholar
  23. Panessa-Warren, B., Tortora, G., and Warren, J. (1997). Exosporial membrane plasticity of Clostridium sporogenes and Clostridium difficile. Tissue and Cell 29, 449-461.PubMedCrossRefGoogle Scholar
  24. Panessa-Warren, B., Tortora, G., and Warren, J. (1994) Electron Microscopy of C. sporogenes endospore attachment and germination. Scanning 16, 227-240.CrossRefGoogle Scholar
  25. Panessa-Warren, B., Tortora, G., Wong, S.S., Ghebrehiwet, B., and Warren, J. (2003) Bacillus and Clostridium Spore Attachment/Entry of Human Colon Cells. Microscopy & Microanalysis 9 (suppl. 2) 1378-1379: Cambridge University Press, NY. 2003.Google Scholar
  26. Panessa-Warren, B., Wong, S.S., Ghebrehiwet, B., Tortora, G.T., and Warren, J. (2002) Carbon Nanotube Membrane Probes: Immuno-labelling by LM, TEM & FESEM, Microscopy and Microanalysis, Voelkl, E., Piston, D., Gauvin, R., Lockley, A., Bailey, G., & McKernan, S. (Eds.) Cambridge University Press, New York, N.Y. 8 (suppl. 2), 726-727CD.Google Scholar
  27. Rety, S., Salamitou, S., Garcia-Verdugo, I., Hulmes, D.J.S., Le Hagarat, F., Chaby, R. , and Lewit-Bentley, A. (2005) The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem 280, 43073-43078.PubMedCrossRefGoogle Scholar
  28. Schaeffer, A., and Fulton, D. (1933) A simplified method for staining spores. Science 77, 194-195.PubMedCrossRefGoogle Scholar
  29. Shany, S., Bernheimer, A.W., Grushoff, P.S., and Kim, K.W. (1974) Evidence for membrane cholesterol as the common binding site for cereolysin, strpetolysin O and saponin. Molec Cell Biochem 3, 179-186.PubMedCrossRefGoogle Scholar
  30. Soderling, E., and Pauino, K.U. (1981) Conditions of production and properties of the collagenolytic enzymes by two Bacillus strains from dental plaque. J Periodontal Res. 16, 513-523.PubMedGoogle Scholar
  31. Sylvestre, P., Couture-Tosi, E., and Mock, M. (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Molec Microbiol 45, 169-178.CrossRefGoogle Scholar
  32. Todd, S.J., Moir, A.J.G., Johnson, M.J., and Moir, A. (2003) Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol 185 (11): 3373-3378.PubMedCrossRefGoogle Scholar
  33. Whitney, E.A.S., Beatty, M.E., Taylor Jr, T.H., Weyant, R., Sobel, J., Arduino, M.J., and Ashford, D.A. (2003) Inactivation of Bacillus anthracis spores. Emerging Infect Dis 9, 623-627.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Berhane Ghebrehiwet
    • 1
  • Lee Tantral
    • 1
  • Mathew A. Titmus
    • 1
  • Barbara J. Panessa-Warren
    • 2
  • George T. Tortora
    • 3
  • Stanislaus S. Wong
    • 4
  • John B. Warren
    • 5
  1. 1.Departments of MedicineStony Brook University
  2. 2.Department of Materials Science Bldg.480Brookhaven National LaboratoryUpton
  3. 3.Departments of Clinical Microbiology LaboratoryStony Brook University
  4. 4.Departments of ChemistryStony Brook University
  5. 5.Instrumentation Division Bldg.535BBrookhaven National LaboratoryUpton

Personalised recommendations