Brief Exposure To –2 G Z Reduces Cerebral Oxygenation In Response To Stand Test

  • Cong C.D. Tran
  • Muriel Berthelot
  • Xavier Etienne
  • Pascal Van Beers
  • Caroline Dussault
  • Jean-Claude Jouanin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 599)


The aim of the present experiment was to determine whether a single 30 s of exposure to –2 G z (foot-to-head inertial forces) as orthostatic stress results in altered brain oxygenation control in response to active standing. Cerebral oxygenation (oxy-Hb), cerebral blood volume (CBV), and mean arterial blood pressure at brain level (MAP brain) were recorded in 12 subjects in supine and then in standing position (10 min), before and after –2 G z centrifugation. The decrease in oxy-Hb (-5 ± 9 vs –9 ± 10 μ M, P 0.001) and in CBV (-2 ± 11 vs –4 ± 12 μ M, P 0.05) upon standing was more important after –2 G z centrifugation, with unchanged MAP brain (-6 ± 7 vs –6 ± 9 mmHg). These findings suggest a downward shift in the static cerebral autoregulation curve.


Mean Arterial Pressure Cerebral Blood Volume Cerebral Oxygenation Cerebral Autoregulation Cerebral Blood Flow Velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Bondar, P.T. Dunphy, P. Moradshahi, H. Dai, M.S. Kassam, F. Stein, S. Schneider, and M. Rubin, Vertical shift in cerebral autoregulation curve: a graded head-up tilt study, Can. Aeronaut. Space J. 45, 3-8 (1999).PubMedGoogle Scholar
  2. 2.
    B.D. Levine, C.A. Giller, L.D. Lane, J.C. Buckey, C.G. Blomqvist, Cerebral versus systemic hemodynamics during graded orthostatic stress in humans, Circulation 90, 298-306 (1994).PubMedGoogle Scholar
  3. 3.
    R. Zhang, J.H. Zuckerman, and B.D. Levine, Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain, J. Appl. Physiol. 85, 1113-1122 (1998).PubMedGoogle Scholar
  4. 4.
    J.M. Serrador, S.J. Wood, P.A. Picot, F. Stein, M.S. Kassam, R.L. Bondar, A.H. Rupert, and T.T. Schlegel, Effect of acute exposure to hypergravity (G x vs G z) on dynamic cerebral autoregulation, J. Appl. Physiol. 91, 1986-1994 (2001).PubMedGoogle Scholar
  5. 5.
    C.C. Tran, M. Berthelot, X. Etienne, C. Dussault, J-C. Jouanin, P. Van Beers, A. Serra, and C.Y. Guezennec. Cerebral oxygenation declines despite maintained orthostatic tolerance after brief exposure to gravitational stress. Neurosci. Lett., 380, 181-186 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Ferrari, L. Mottola, and V. Quaresima, Principles, techniques, and limitations of near infrared spectroscopy, Can. J. Appl. Physiol. 29(4), 463-487 (2004).PubMedGoogle Scholar
  7. 7.
    P.L. Madsen, and N.H. Secher, Near-infrared oximetry of the brain, Prog. Neurobiol. 58, 541-560 (1999).Google Scholar
  8. 8.
    A. Kobayashi, and Y. Miyamoto, In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy, Aviat. Space Environ. Med. 71, 177-183 (2000).PubMedGoogle Scholar
  9. 9.
    P. van der Zee, M. Cope, S.R. Arridge, M. Essenpries, L.A. Potter, A.D. Edwards, J.S. Wyatt, D.C. McCormick, S.C. Roth, E.O.R. Reynolds, and D.T. Delpy, Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of interoptodes spacing, Adv. Exp. Med. Biol. 316, 143-153 (1992).Google Scholar
  10. 10.
    G. Bertinieri, M. Di Rienzo, A. Cavallazzi, A.U. Ferrari, A. Pedotti, and G. Mancia, Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats, Am. J. Physiol. 254, 377-383 (1988).Google Scholar
  11. 11.
    J.J. van Lieshout, F. Pott, P.L. Madsen, J. van Goudoever, and N.H. Secher, Muscle tensing during standing, Effects on cerebral tissue oxygenation and cerebral artery blood velocity, Stroke 32,1546-1551 (2001).PubMedGoogle Scholar
  12. 12.
    M.P.M. Harms, W.N.J.M. Colier, W. Wieling, J.W.M. Lenders, N.H. Secher, and J.J. van Lieshout, Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure, Stroke 31, 1608-1614 (2000)PubMedGoogle Scholar
  13. 13.
    K. Krakov, S. Ries, M. Daffertschofer, and M. Hennerici, Simultaneous assessment of brain tissue oxygenation and cerebral perfusion during orthostatic stress, European Neurology 43, 39-46 ( 2000).CrossRefGoogle Scholar
  14. 14.
    D.H. Glaister, and N.L. Miller, Cerebral tissue oxygen status and psychomotor performance during lower body negative pressure (LBNP), Aviat. Space Environ. Med. 61, 99-105 (1990).PubMedGoogle Scholar
  15. 15.
    . S. Houtman, J.M. Serrador, W.N.J.M. Colier, D.W. Strijbos, K. Shoemaker, and M.T.E. Hopman, Changes in cerebral oxygenation and blood flow during LBNP in spinal cored-injured individuals, J. Appl. Physiol. 91, 2199-2204 (2001).PubMedGoogle Scholar
  16. 16.
    M. Shiraishi, M. Schou, M. Gybel, NJ. Christensen, and Peter Norsk, Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans, J. Appl. Physiol. 92, 264-268 (2002).PubMedGoogle Scholar
  17. 17.
    J.M. Serrador, J.K. Shoemaker, T.E. Brown, M.S. Kassam, R.L. Bondar, and T.T. Schlegel, Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight, Brain Res. Bull. 53, 113-120 (2000).Google Scholar
  18. 18.
    B. Cheung, and WA. Bateman, G-transition effects and their implications, Aviat. Space Environ. Med. 72, 758-762 (2001).PubMedGoogle Scholar
  19. 19.
    B.J. Yates, Vestibular influences on the sympathetic nervous system, Brain Res. Rev. 17, 51-59 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cong C.D. Tran
    • 1
  • Muriel Berthelot
    • 1
  • Xavier Etienne
    • 1
  • Pascal Van Beers
    • 1
  • Caroline Dussault
    • 1
  • Jean-Claude Jouanin
    • 1
  1. 1.Institut de médecine aérospatiale du service de santé des arméesBP 73 Brétigny/OrgeFrance

Personalised recommendations