Nitric Oxide in The Kidney Direct measurements of bioavailable renal nitric oxide

  • Fredrik Palm
  • Lina Nordquist
  • Donald G. Buerk
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 599)


Increasing efforts have been directed towards investigating the involvement of nitric oxide (NO) for normal kidney function. Recently, a crucial role of NO in the development of progressive renal dysfunction has been reported during diabetes and hypertension. Indirect estimation of renal NO production include urinary nitrite/nitrate measurements, but there are several disadvantages of indirect methods since production and bioavailability of NO rarely coincide. Thus, direct measurement of in vivo NO bioavailability is preferred, although these methods are more time consuming and require highly specialized equipment and knowledge. This review focuses on two techniques for in vivo measurement of bioavailable NO in the kidney. We have applied Whalen-type recessed NO microsensors for measurement of NO in the kidney cortex, whereas the hemoglobin-trapping technique seems to be more suitable for NO measurement in the renal medulla. Both methods are robust and reliable, and we discuss advantages and shortcomings of each method.


Nitric Oxide Nitric Oxide Microdialysis Probe Renal Medulla Asymmetric Dimethylarginine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Kone, and C. Baylis, Biosynthesis and homeostatic roles of nitric oxide in the normal kidney, Am J Physiol 272(F561-F578 (1997).PubMedGoogle Scholar
  2. 2.
    M. G. Salom, B. Arregui, L. F. Carbonell, F. Ruiz, J. L. Gonzalez-Mora, and F. J. Fenoy, Renal ischemia induces an increase in nitric oxide levels from tissue stores, Am J Physiol Regul Integr Comp Physiol 289(5), R1459-1466 (2005).PubMedGoogle Scholar
  3. 3.
    N. Miyata, A. P. Zou, D. L. Mattson, and A. W. Cowley, Jr., Renal medullary interstitial infusion of L-arginine prevents hypertension in Dahl salt-sensitive rats, Am J Physiol 275(5 Pt 2), R1667-1673 (1998).PubMedGoogle Scholar
  4. 4.
    R. Komers, and S. Anderson, Paradoxes of nitric oxide in the diabetic kidney, Am J Physiol Renal Physiol 284(6), F1121-F1137 (2003).PubMedGoogle Scholar
  5. 5.
    F. Palm, D. G. Buerk, P. O. Carlsson, P. Hansell, and P. Liss, Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation, Diabetes 54(11), 3282-3287 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    A. P. Zou, and A. W. Cowley, Jr., Nitric oxide in renal cortex and medulla. An in vivo microdialysis study, Hypertension 29(1 Pt 2), 194-198 (1997).PubMedGoogle Scholar
  7. 7.
    M. Kakoki, H. S. Kim, W. J. Arendshorst, and D. L. Mattson, L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla, Am J Physiol Regul Integr Comp Physiol 287(6), R1478-1485 (2004).PubMedGoogle Scholar
  8. 8.
    P. A. Ortiz, and J. L. Garvin, Role of nitric oxide in the regulation of nephron transport, Am J Physiol Renal Physiol 282(5), F777-84 (2002).PubMedGoogle Scholar
  9. 9.
    A. Deng, C. M. Miracle, J. M. Suarez, M. Lortie, J. Satriano, S. C. Thomson, K. A. Munger, and R. C. Blantz, Oxygen consumption in the kidney: Effects of nitric oxide synthase isoforms and angiotensin II, Kidney Int 68(2), 723-730 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    C. G. Schnackenberg, Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature, Am J Physiol Regul Integr Comp Physiol 282(2), R335-R342 (2002).PubMedGoogle Scholar
  11. 11.
    A. Koivisto, J. Pittner, M. Froelich, and A. E. Persson, Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide, nKidney Int 55(6), 2368-2375 (1999).CrossRefGoogle Scholar
  12. 12.
    R. H. Boger, Asymmetric dimethylarginine (ADMA) modulates endothelial function–therapeutic implications, Vasc Med 8(3), 149-51 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    C. T. Tran, J. M. Leiper, and P. Vallance, The DDAH/ADMA/NOS pathway, Atheroscler Suppl 4(4), 33-40 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    R. H. Boger, Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor, J Nutr 134(10 Suppl), 2842S-2847S; discussion 2853S (2004).PubMedGoogle Scholar
  15. 15.
    D. G. Buerk, C. E. Riva, and S. D. Cranstoun, Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli, Microvasc Res 52(1), 13-26 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    W. J. Whalen, J. Riley, and P. Nair, A microelectrode for measuring intracellular PO2, J Appl Physiol 23(5), 798-801 (1967).PubMedGoogle Scholar
  17. 17.
    Y. Zhang, F. E. Samson, S. R. Nelson, and T. L. Pazdernik, Nitric oxide detection with intracerebral microdialysis: important considerations in the application of the hemoglobin-trapping technique, J Neurosci Methods 68(2), 165-173 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Balcioglu, and T. J. Maher, The measurement of nitric oxide release induced by kainic acid using a novel hemoglobin-trapping technique with microdialysis, Ann N Y Acad Sci 738(282-288 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Palm, P. Hansell, G. Ronquist, A. Waldenstrom, P. Liss, and P. O. Carlsson, Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats, Diabetologia 47(7), 1223-1231 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Thorup, M. Kornfeld, J. M. Winaver, M. S. Goligorsky, and L. C. Moore, Angiotensin-II stimulates nitric oxide release in isolated perfused renal resistance arteries, Pflugers Arch 435(3), 432-434 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fredrik Palm
    • 1
  • Lina Nordquist
    • 1
  • Donald G. Buerk
    • 2
  1. 1.Department of Medical Cell BiologyUppsala University, Biomedical CenterPO 571, SE 751 23 UppsalaSweden
  2. 2.Departments of Physiology and BioengineeringUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations