Intratumoral Vegf and Fgf1 Administration Alters Tumor Growth, Vascular Density, Oxygenation, and Expression of Mcp-1 and Interleukins

  • Paul Okunieff
  • Jianzhong Sun
  • Bruce Fenton
  • Weimin Liu
  • Ivan Ding
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 599)


The biological and physiological effects of exogenous FGF1 and VEGF were measured using the KHT murine fibrosarcoma tumor model. Tumor-bearing C3H mice were treated intratumorally with either one or six daily doses of 6 μ g/mouse FGF1, VEGF, or saline. Tumors were excised 24 hrs after the final injection. Compared to controls, only FGF1 treatment significantly increased tumor weight and size, and only in the 6 dose group. Both FGF1 and VEGF administration (6 dose) decreased tumor cell hypoxia as detected by EF5 uptake: 85% ± 5% for FGF1 and 82% ± 6% for VEGF versus 100% ± 6% for controls. Decreased tumor cell EF5 staining, however, was not associated with changes in numbers of structural or angiogenic vessels. DiOC7 staining showed a slight decrease in perfused vessel numbers in tumors treated with daily VEGF. Intratumoral injections of FGF1 or VEGF also slightly decreased the tumor tissue chemokine MCP-1, interleukins (IL-1β , IL-6, and IL-18) mRNA expression, and increased NFκ B binding without altering Ap-1 binding of Iκ B protein expression. In summary, single pulse exposures of tumors to angiogenic factors had little or no effects on tumor growth or perfusion, while daily exposures stimulated tumor growth through improved tumor oxygenation. This improved vascular function occurs without an increase in vascular density.


Basic Fibroblast Growth Factor Intratumoral Injection Angiogenic Growth Factor Volume Doubling Time Hypoxic Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Ding, K. Huang, X. Wang, J. R. Greig, R. W. Miller, and P. Okunieff P, Radioprotection of hematopoietic tissue by fibroblast growth factors in fractionated radiation experiments, Acta. Oncol. 36, 337-340 (1997).PubMedGoogle Scholar
  2. 2.
    I. Ding, T. Wu,H. Matsubara, et al, Acidic fibroblast growth factor (FGF1) increases survival and haematopoietic recovery in total body irradiated C3H/HeNCr mice, Cytokine 9, 59-65 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    Z. Fuks, R. S. Persaud, A. Alfieri, et al, Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo, Cancer Res. 54, 2582-2590 (1994).PubMedGoogle Scholar
  4. 4.
    P. Okunieff, M. Mester, J. Wang, et al, In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice, Radiat. Res. 150, 204-211 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    X. Wang, I. Ding, H. Xie H, et al, Hyperbaric oxygen and basic fibroblast growth factor promote growth of irradiated bone, Int. J. Radiat. Oncol. Biol. Phys. 40, 189-196 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    P. G. Tee , E. L. Travis, Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice, Cancer Res. 55, 298-302 (1995).PubMedGoogle Scholar
  7. 7.
    M. Presta, D. B. Rifkin, New aspects of blood vessel growth: tumor and tissue-derived angiogenesis factors, Haemostasis 18, 6-17 (1988).PubMedGoogle Scholar
  8. 8.
    L. Zhang, S. Kharbanda, D. Chen, et al, MCF-7 breast carcinoma cells overexpressing FGF-1 form vascularized, metastatic tumors in ovariectomized or tamoxifen-treated nude mice, Oncogene 15, 2093-2108 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    S. W. McLeskey, J. Kurebayashi, S. F. Honig, et al, Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice, Cancer Res. 53, 2168-2177 (1993).PubMedGoogle Scholar
  10. 10.
    R. Neta, Modulation of radiation damage by cytokines, Stem Cells 15 (Suppl 2), 87-94 (1997).PubMedGoogle Scholar
  11. 11.
    R. Neta, Modulation with cytokines of radiation injury: suggested mechanisms of action, Environ. Health Perspect. 105(Suppl 6), 1463-1465 (1997).CrossRefGoogle Scholar
  12. 12.
    J. Folkman, Angiogenesis: initiation and control, Ann. N. Y. Acad. Sci. 401, 212-227 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    F. G. Kern, M. E. Lippman, S. W. McLeskey, et al, The role of angiogenic growth factors in breast cancer progression, Cancer Metastas. Rev. 15, 213-219 (1996).CrossRefGoogle Scholar
  14. 14.
    B. M. Fenton, S. F. Paoni, J. Lee, C. J. Koch, E. M. Lord, Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements, Br. J. Cancer 79, 464-471 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Bodey, B. Bodey Jr., S. E. Siegel, H. E. Kaiser, Immunocytochemical detection of endoglin is indicative of angiogenesis in malignant melanoma, Anticancer Res. 18, 2701-2710 (1998).PubMedGoogle Scholar
  16. 16.
    B. Bodey, B. Bodey Jr.,S. E. Siegel, H. E. Kaiser, Over-expression of endoglin (CD105): a marker of breast carcinoma- induced neo-vascularization, Anticancer Res. 18, 3621-3628 (1998).PubMedGoogle Scholar
  17. 17.
    E. M. Lord, L. Harwell, C. J. Koch, Detection of hypoxic cells by monoclonal antibody recognizing 2- nitroimidazole adducts, Cancer Res. 53, 5721-5726 (1993).PubMedGoogle Scholar
  18. 18.
    A. M. Manning, F. P. Bell, C. L. Rosenbloom, et al, NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment, J. Inflamm. 45, 283-296 (1995).PubMedGoogle Scholar
  19. 19.
    G. Molema, D. K. Meijer, L. F. de Leij, Tumor vasculature targeted therapies: getting the players organized, Biochem. Pharmacol. 55, 1939-1945 (1998).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Okunieff, X. Wang, M. Li M, et al, Chronic radiation bone toxicity is associated with decreased perfusion without elevation of circulating or soft tissue TGF beta or TNF alpha, Adv. Exp. Med. Biol. 454, 325-333 (1998).PubMedGoogle Scholar
  21. 21.
    P. Okunieff, E. H. Abraham, M. Moini, et al, Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumor, Acta. Oncol. 34, 435-438 (1995).PubMedGoogle Scholar
  22. 22.
    F. G. Kern, S. W. McLeskey, L. Zhang, et al, Transfected MCF-7 cells as a model for breast-cancer progression, Breast Cancer Res. Treat. 31, 153-165 (1994).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Yoneda, H. Kuniyasu, M. A. Crispens, J. E. Price, C. D. Bucana, I. J. Fidler, Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice, J. Natl. Cancer Inst. 90, 447-454 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    J. T. Leith, S. Michelson, Effects of administration of basic fibroblast growth factor on hypoxic fractions in xenografted DLD-2 human tumours: time dependence, Br. J. Cancer 68, 727-731 (1993).PubMedGoogle Scholar
  25. 25.
    J. T. Leith, G. Papa, L. Quaranto, S. Michelson, Modification of the volumetric growth responses and steady-state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin, Br. J. Cancer 66, 345-348 (1992).PubMedGoogle Scholar
  26. 26.
    J. T. Leith, G. Padfield, S. Michelson, Effects of partial hepatectomy on the growth characteristics and hypoxic fractions of xenografted DLD-2 human colon cancers, Radiat. Res. 132, 263-268 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    J. T. Leith, P. Harrigan, G. Padfield, L. Faulkner, S. Michelson, Modification of the growth rates and hypoxic fractions of xenografted A431 tumors by sialoadenectomy or exogenously supplied epidermal growth factor, Cancer Res. 51, 4111-4113 (1991).PubMedGoogle Scholar
  28. 28.
    J. T. Leith, Modification of the hypoxic fraction of a xenografted human colon tumor by differentiation-inducing agents, J. Natl. Cancer Inst. 80, 444-447 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Balsari, J. A. Maier, M. I. Colnaghi, S. Menard, Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor levels, and serum angiogenic activity in patients with breast carcinoma, Lab. Invest. 79, 897-902 (1999).PubMedGoogle Scholar
  30. 30.
    D. Strohmeyer, Pathophysiology of tumor angiogenesis and its relevance in renal cell cancer, Anticancer Res. 19, 1557-1561 (1999).PubMedGoogle Scholar
  31. 31.
    F. Kaplan, J. Sawyer, S. Connors, K. Keough, E. Shore, F. Gannon, D. Glaser, D. Rocke, M. Zasloff, J. Folkman, Urinary basic fibroblast growth factor. A biochemical marker for preosseous fibroproliferative lesions in patients with fibrodysplasia ossificans progressiva, Clin. Orthop. 346, 59-65 (1998).PubMedGoogle Scholar
  32. 32.
    P. Vaupel, D. K. Kelleher, M. Höckel, Oygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy, Semin. Oncol. 28(2 Suppl 8), 29-35 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res. 56(5), 941-943 (1996).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul Okunieff
    • 1
  • Jianzhong Sun
    • 1
  • Bruce Fenton
    • 1
  • Weimin Liu
    • 1
  • Ivan Ding
    • 1
  1. 1.Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations