Skip to main content

Intratumoral Vegf and Fgf1 Administration Alters Tumor Growth, Vascular Density, Oxygenation, and Expression of Mcp-1 and Interleukins

  • Conference paper
Oxygen Transport to Tissue XXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 599))

Abstract

The biological and physiological effects of exogenous FGF1 and VEGF were measured using the KHT murine fibrosarcoma tumor model. Tumor-bearing C3H mice were treated intratumorally with either one or six daily doses of 6 μ g/mouse FGF1, VEGF, or saline. Tumors were excised 24 hrs after the final injection. Compared to controls, only FGF1 treatment significantly increased tumor weight and size, and only in the 6 dose group. Both FGF1 and VEGF administration (6 dose) decreased tumor cell hypoxia as detected by EF5 uptake: 85% ± 5% for FGF1 and 82% ± 6% for VEGF versus 100% ± 6% for controls. Decreased tumor cell EF5 staining, however, was not associated with changes in numbers of structural or angiogenic vessels. DiOC7 staining showed a slight decrease in perfused vessel numbers in tumors treated with daily VEGF. Intratumoral injections of FGF1 or VEGF also slightly decreased the tumor tissue chemokine MCP-1, interleukins (IL-1β , IL-6, and IL-18) mRNA expression, and increased NFκ B binding without altering Ap-1 binding of Iκ B protein expression. In summary, single pulse exposures of tumors to angiogenic factors had little or no effects on tumor growth or perfusion, while daily exposures stimulated tumor growth through improved tumor oxygenation. This improved vascular function occurs without an increase in vascular density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Ding, K. Huang, X. Wang, J. R. Greig, R. W. Miller, and P. Okunieff P, Radioprotection of hematopoietic tissue by fibroblast growth factors in fractionated radiation experiments, Acta. Oncol. 36, 337-340 (1997).

    PubMed  CAS  Google Scholar 

  2. I. Ding, T. Wu,H. Matsubara, et al, Acidic fibroblast growth factor (FGF1) increases survival and haematopoietic recovery in total body irradiated C3H/HeNCr mice, Cytokine 9, 59-65 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Z. Fuks, R. S. Persaud, A. Alfieri, et al, Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo, Cancer Res. 54, 2582-2590 (1994).

    PubMed  CAS  Google Scholar 

  4. P. Okunieff, M. Mester, J. Wang, et al, In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice, Radiat. Res. 150, 204-211 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. X. Wang, I. Ding, H. Xie H, et al, Hyperbaric oxygen and basic fibroblast growth factor promote growth of irradiated bone, Int. J. Radiat. Oncol. Biol. Phys. 40, 189-196 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. P. G. Tee , E. L. Travis, Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice, Cancer Res. 55, 298-302 (1995).

    PubMed  CAS  Google Scholar 

  7. M. Presta, D. B. Rifkin, New aspects of blood vessel growth: tumor and tissue-derived angiogenesis factors, Haemostasis 18, 6-17 (1988).

    PubMed  CAS  Google Scholar 

  8. L. Zhang, S. Kharbanda, D. Chen, et al, MCF-7 breast carcinoma cells overexpressing FGF-1 form vascularized, metastatic tumors in ovariectomized or tamoxifen-treated nude mice, Oncogene 15, 2093-2108 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. S. W. McLeskey, J. Kurebayashi, S. F. Honig, et al, Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice, Cancer Res. 53, 2168-2177 (1993).

    PubMed  CAS  Google Scholar 

  10. R. Neta, Modulation of radiation damage by cytokines, Stem Cells 15 (Suppl 2), 87-94 (1997).

    PubMed  CAS  Google Scholar 

  11. R. Neta, Modulation with cytokines of radiation injury: suggested mechanisms of action, Environ. Health Perspect. 105(Suppl 6), 1463-1465 (1997).

    Article  CAS  Google Scholar 

  12. J. Folkman, Angiogenesis: initiation and control, Ann. N. Y. Acad. Sci. 401, 212-227 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. F. G. Kern, M. E. Lippman, S. W. McLeskey, et al, The role of angiogenic growth factors in breast cancer progression, Cancer Metastas. Rev. 15, 213-219 (1996).

    Article  CAS  Google Scholar 

  14. B. M. Fenton, S. F. Paoni, J. Lee, C. J. Koch, E. M. Lord, Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements, Br. J. Cancer 79, 464-471 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. B. Bodey, B. Bodey Jr., S. E. Siegel, H. E. Kaiser, Immunocytochemical detection of endoglin is indicative of angiogenesis in malignant melanoma, Anticancer Res. 18, 2701-2710 (1998).

    PubMed  CAS  Google Scholar 

  16. B. Bodey, B. Bodey Jr.,S. E. Siegel, H. E. Kaiser, Over-expression of endoglin (CD105): a marker of breast carcinoma- induced neo-vascularization, Anticancer Res. 18, 3621-3628 (1998).

    PubMed  CAS  Google Scholar 

  17. E. M. Lord, L. Harwell, C. J. Koch, Detection of hypoxic cells by monoclonal antibody recognizing 2- nitroimidazole adducts, Cancer Res. 53, 5721-5726 (1993).

    PubMed  CAS  Google Scholar 

  18. A. M. Manning, F. P. Bell, C. L. Rosenbloom, et al, NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment, J. Inflamm. 45, 283-296 (1995).

    PubMed  CAS  Google Scholar 

  19. G. Molema, D. K. Meijer, L. F. de Leij, Tumor vasculature targeted therapies: getting the players organized, Biochem. Pharmacol. 55, 1939-1945 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. P. Okunieff, X. Wang, M. Li M, et al, Chronic radiation bone toxicity is associated with decreased perfusion without elevation of circulating or soft tissue TGF beta or TNF alpha, Adv. Exp. Med. Biol. 454, 325-333 (1998).

    PubMed  CAS  Google Scholar 

  21. P. Okunieff, E. H. Abraham, M. Moini, et al, Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumor, Acta. Oncol. 34, 435-438 (1995).

    PubMed  CAS  Google Scholar 

  22. F. G. Kern, S. W. McLeskey, L. Zhang, et al, Transfected MCF-7 cells as a model for breast-cancer progression, Breast Cancer Res. Treat. 31, 153-165 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. J. Yoneda, H. Kuniyasu, M. A. Crispens, J. E. Price, C. D. Bucana, I. J. Fidler, Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice, J. Natl. Cancer Inst. 90, 447-454 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. J. T. Leith, S. Michelson, Effects of administration of basic fibroblast growth factor on hypoxic fractions in xenografted DLD-2 human tumours: time dependence, Br. J. Cancer 68, 727-731 (1993).

    PubMed  CAS  Google Scholar 

  25. J. T. Leith, G. Papa, L. Quaranto, S. Michelson, Modification of the volumetric growth responses and steady-state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin, Br. J. Cancer 66, 345-348 (1992).

    PubMed  CAS  Google Scholar 

  26. J. T. Leith, G. Padfield, S. Michelson, Effects of partial hepatectomy on the growth characteristics and hypoxic fractions of xenografted DLD-2 human colon cancers, Radiat. Res. 132, 263-268 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. J. T. Leith, P. Harrigan, G. Padfield, L. Faulkner, S. Michelson, Modification of the growth rates and hypoxic fractions of xenografted A431 tumors by sialoadenectomy or exogenously supplied epidermal growth factor, Cancer Res. 51, 4111-4113 (1991).

    PubMed  CAS  Google Scholar 

  28. J. T. Leith, Modification of the hypoxic fraction of a xenografted human colon tumor by differentiation-inducing agents, J. Natl. Cancer Inst. 80, 444-447 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. A. Balsari, J. A. Maier, M. I. Colnaghi, S. Menard, Correlation between tumor vascularity, vascular endothelial growth factor production by tumor cells, serum vascular endothelial growth factor levels, and serum angiogenic activity in patients with breast carcinoma, Lab. Invest. 79, 897-902 (1999).

    PubMed  CAS  Google Scholar 

  30. D. Strohmeyer, Pathophysiology of tumor angiogenesis and its relevance in renal cell cancer, Anticancer Res. 19, 1557-1561 (1999).

    PubMed  CAS  Google Scholar 

  31. F. Kaplan, J. Sawyer, S. Connors, K. Keough, E. Shore, F. Gannon, D. Glaser, D. Rocke, M. Zasloff, J. Folkman, Urinary basic fibroblast growth factor. A biochemical marker for preosseous fibroproliferative lesions in patients with fibrodysplasia ossificans progressiva, Clin. Orthop. 346, 59-65 (1998).

    PubMed  Google Scholar 

  32. P. Vaupel, D. K. Kelleher, M. Höckel, Oygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy, Semin. Oncol. 28(2 Suppl 8), 29-35 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res. 56(5), 941-943 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Okunieff, P., Sun, J., Fenton, B., Liu, W., Ding, I. (2008). Intratumoral Vegf and Fgf1 Administration Alters Tumor Growth, Vascular Density, Oxygenation, and Expression of Mcp-1 and Interleukins. In: Maguire, D.J., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVIII. Advances in Experimental Medicine and Biology, vol 599. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71764-7_15

Download citation

Publish with us

Policies and ethics