Pseudogenes and The Electron Transport Chain

  • H.M. Oey
  • D.J. Maguire
  • M. McCabe
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 599)


With the advent of easy access to the human genome sequence, molecular biology techniques to target respirome-specific genes have begun to be exploited in the study of human disorders and in particular human cancers. In some recent publications it would appear that some investigators have inappropriately targeted pseudogenes rather than functional genes. The high transcription level and generally small size of many of the genes in the respirome make them prone to duplications in the form of processed pseudogenes within the human genome. Such genes can be challenging to analyse using standard molecular genetics approaches. In this presentation, we offer an analysis of pseudogenes that have been identified to have significant homology with some elements of the respirome. Other sequence elements such as Alu repeats, which present similar research obstacles, are also discussed.


Electron Transport Chain Ubiquinone Oxidoreductase Insertion Rate Mitochondrial Proteome High Transcription Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. F. Vanin. Processed pseudogenes: Characteristics and evolution. Annu. Rev. Genet. 19, 253-272 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    A. J. Mighell, N. R. Smith, P. A. Robinson, and A. F. Markham. Vertebrate pseudogenes. FEBS Lett. 468, 109-114 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    I. Goncalves, L. Duret and D. Mouchiroud. Nature and structure of human genes that generate retropseudogenes. Genome Res. 10(5), 672-678 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    V. E. Prince and F.B. Pickett. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 3(11),827-37 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Torrents, M. Suyama, E. Zdobnov and P. Bork. A genome-wide survey of human pseudogenes. Genome Res. 13(12),2559-2567 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    Z. Zhang, P. M. Harrison, Y. Liu and M. Gerstein. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13(12), 2541-2558 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    A. M. Weiner, P. L. Deininger and A. Efstratiadis. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 55, 631-661 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Pavlicek, J. Paces, R. Zika and J. Hejnar. Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene. 300(1-2), 189-194 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Hattori, S. Kuhara, O. Takenaka and Y. Sakaki. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature. 321(6070), 625-628 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    D. D. Luan and T. H. Eickbush. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol. 15(7), 3882-3891 (1995).PubMedGoogle Scholar
  11. 11.
    G. J. Cost, Q. Feng, A. Jacquier and J. D. Boeke. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21(21),5899-5910 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Grover, M. Mukerji, P. Bhatnagar, K. Kannan and S. K. Brahmachari. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics. 20(6), 813-817 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).Google Scholar
  14. 14.
    Z. Zhang, N. Carriero and M. Gerstein. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20(2), 62-67 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    E. S. Balakirev and F. J. Ayala. Pseudogenes: are they "junk" or functional DNA? Annu Rev Genet. 37,123-151 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    P. M. Harrison, D. Zheng, Z. Zhang, N. Carriero, M. Gerstein. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res. 33(8), 2374-2383 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    J. R. McCarrey and K. Thomas. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature. 326(6112), 501-505 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Bristow, S. E. Gitelman, M. K. Tee, B. Staels and W. L. Miller. Abundant adrenal-specific transcription of the human P450c21A "pseudogene".j J Biol Chem. 268(17), 12919-12924 (1993).PubMedGoogle Scholar
  19. 19.
    S. Ramos-Onsins and M. Aguade. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 150(1), 157-171 (1998).PubMedGoogle Scholar
  20. 20.
    S. M. Troyanovsky and R. E. Leube. Activation of the silent human cytokeratin 17 pseudogene-promoter region by cryptic enhancer elements of the cytokeratin 17 gene. Eur J Biochem. 225(1), 61-69 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    O. Podlaha and J. Zhang. Nonneutral evolution of the transcribed pseudogene Makorin1-p1 in mice. Mol Biol Evol. 21(12), 2202-2209 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    B. S. Zhou, D. R. Beidler and Y. C. Cheng. Identification of antisense RNA transcripts from a human DNA topoisomerase I pseudogene. Cancer Res. 52(15), 4280-4285 (1992).PubMedGoogle Scholar
  23. 23.
    D. Weil, M. A. Power, G. C. Webb and C. L. Li. Antisense transcription of a murine FGFR-3 psuedogene during fetal developement. Gene. 187(1), 115-122 (1997).PubMedCrossRefGoogle Scholar
  24. 24.
    I. E. Scheffler. Mitochondria make a come back. Adv Drug Deliv Rev. 49(1-2), 3-26 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Berry. Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta. 1606(1-3), 57-72 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    O. G. Berg and C. G. Kurland. Why mitochondrial genes are most often found in nuclei. Mol Biol Evol. 17(6), 951-961 (2000).PubMedGoogle Scholar
  27. 27.
    C. G. Kurland and S. G. Andersson. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev. 64(4), 786-820 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman. Basic local alignment search tool. J Mol Biol. 215(3), 403-410 (1990).PubMedGoogle Scholar
  29. 29.
    T. Gabaldon and M. A. Huynen. Shaping the mitochondrial proteome. Biochim Biophys Acta. 1659(2-3), 212-220 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    J. E. Walker. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 25 (3), 253-324 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    U. Weidner, S. Geier, A. Ptock, T. Friedrich, H. Leif and H. Weiss. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol. 233(1), 109-122 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Carroll, R. J. Shannon, I. M. Fearnley, J. E. Walker and J. Hirst. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem. 277(52), 50311-50317 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Gabaldon, D. Rainey and M. A. Huynen. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol. 348(4), 857-870 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Khelifi, L. Duret and D. Mouchiroud. HOPPSIGEN: a database of human and mouse processed pseudogenes. Nucleic Acids Res. 33(Database issue), D59-D66 (2005).Google Scholar
  35. 35.
    K.A. Kreuzer, U. Lass, O. Landt, A. Nitsche, J. Laser, H. Ellerbrok, G. Pauli, D. Huhn and C.A Schmidt. Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem.45(2), 297-300 (1999).PubMedGoogle Scholar
  36. 36.
    D. Zheng, Z. Zhang, P. M. Harrison, J. Karro, N. Carriero and M. Gerstein. Integrated pseudogene annotation for human chromosome 22: evidence for transcription. J Mol Biol. 349(1), 27-45 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H.M. Oey
    • 1
  • D.J. Maguire
    • 1
  • M. McCabe
    • 1
  1. 1.School of Biomolecular and Biomedical ScienceGriffith UniversityQueensland 4111Australia

Personalised recommendations