The Roles of Thymosin β4 in Cell Migration and Cell-to-Cell Signaling in Disease

  • Joshua K. Au
  • Mira Krendel
  • Daniel Safer
  • Enrique M. De La Cruz
Part of the Protein Reviews book series (PRON, volume 8)

The β-thymosins are a highly conserved family of strongly polar ~5 kDa polypeptides that are widely distributed in metazoan cells (Fig. 1). Thymosin βin4, the most abundant and best-characterized β-thymosin, binds monomeric actin in a stable 1:1 complex and acts as an actin “buffer,” preventing spontaneous polymerization but supplying high concentrations of free actin monomers for rapid filament elongation when cells are stimulated by extracellular cues. Several biological regulatory effects are attributed to Tβin4 and oxidized Tβin4. Among these are the induction of angiogenesis, tumor metastasis and the inhibition of inflammation. Correspondingly, several therapeutic applications for Tβ4 have been proposed.


Actin Binding Actin Monomer Actin Binding Site Spontaneous Polymerization Thymosin Beta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badamchian, M., Fagarasan, M. O., Danner, R. L., Suffredini, A. F., Damavandy, H. and Goldstein, A. L. 2003. Thymosin beta(4) reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock. Int. Immunopharmacol. 3,1225-1233.CrossRefPubMedGoogle Scholar
  2. Ballweber, E., Hannappel, E., Huff, T., Stephan, H., Haener, M., Taschner, N., Stoffler, D., Aebi, U. and Mannherz, H. G. 2002. Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: Alteration in hel-ical parameters and visualisation of thymosin beta(4) binding on F-actin. J. Mol. Biol. 315, 613-625.CrossRefPubMedGoogle Scholar
  3. Bock-Marquette, I., Saxena, A., White, M. D., Dimaio, J. M. and Srivastava, D. 2004. Thymosin beta 4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466-472.CrossRefPubMedGoogle Scholar
  4. Carlier, M. F., Didry, D., Erk, I., Lepault, J., Van Troys, M. L., Vandekerckhove, J. H., Perelroizen, I., Yin, H., Doi, Y. and Pantaloni, D. 1996. Tbeta 4 is not a simple G-actin sequestering protein and interacts with F-actin at high concentration. J. Biol. Chem. 271, 9231-9239.CrossRefPubMedGoogle Scholar
  5. Cha, H., Jeong, M. and Kleinman, H. K. 2003. Role of thymosin beta 4 in tumor metastasis and angiogenesis. J. Natl Cancer Inst. 95, 1674-1680.PubMedGoogle Scholar
  6. Czisch, M., Schleicher, M., Horger, S., Voelter, W. and Holak, T. A. 1993. Conformation of thymosin beta 4 in water determined by NMR spectroscopy. Eur. J. Biochem. 218, 335-344.CrossRefPubMedGoogle Scholar
  7. Dedova, I. V., Nikolaeva, O. P., Safer, D., De La Cruz, E. M. and dos Remedios, C. G. 2006. Thymosin beta 4 induces a conformational change in actin monomers. Biophys. J. 90, 985-992.CrossRefPubMedGoogle Scholar
  8. De La Cruz, E. M., Ostap, E. M., Brundage, R. A., Reddy, K. S., Sweeney, H. L. and Safer, D. 2000. Thymosin beta 4 Changes the conformation and dynamics of actin monomers. Biophys. J. 78, 2516-2527.CrossRefPubMedGoogle Scholar
  9. Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M. F., Guittet, E. and van Heijenoort, C. 2004. Coupling of folding and binding of thymosin beta 4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645.CrossRefPubMedGoogle Scholar
  10. Erukhimov, J. A., Tang, Z. L., Johnson, B. A., Donahoe, M. P., Razzack, J. A., Gibson, K. F., Lee, W. M., Wasserloos, K. J., Watkins, S. A. and Pitt, B. R. 2000. Actin-containing sera from patients with adult respiratory distress syndrome are toxic to sheep pulmonary endothelial cells. Am. J. Respir. Crit. Care Med. 162, 288-294.PubMedGoogle Scholar
  11. Goldschmidt-Clermont, P. J., Furman, M. I., Wachsstock, D., Safer, D., Nachmias, V. T. and Pollard, T. D. 1992. The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell 3, 1015-1024.PubMedGoogle Scholar
  12. Goldstein, A. L., Hannappel, E. and Kleinman, H. K. 2005. Thymosin beta 4: Actinsequestering protein moonlights to repair injured tissues. Trends Mol. Med. 11, 421-429.CrossRefPubMedGoogle Scholar
  13. Goldstein, A. L., Low, T. L., McAdoo, M., McClure, J., Thurman, G. B., Rossio, J., Lai, C. Y., Chang, D., Wang, S. S., Harvey, C., Ramel, A. H. and Meienhofer, J. 1977. Thymosin alpha 1: Isolation and sequence analysis of an immunologically active thymic polypeptide. Proc. Natl Acad. Sci. USA 74, 725-729.CrossRefPubMedGoogle Scholar
  14. Goldstein, A. L., Slater, F. D. and White, A. 1966. Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc. Natl Acad. Sci. USA 56, 1010-1017.CrossRefPubMedGoogle Scholar
  15. Grant, D. S., Rose, W., Yaen, C., Goldstein, A., Martinez, J. and Kleinman, H. 1999. Thymosin beta 4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3, 125-135.CrossRefPubMedGoogle Scholar
  16. Haddad, J. G., Harper, K. D., Guoth, M., Pietra, G. G. and Sanger, J. W. 1990. Angiopathic consequences of saturating the plasma scavenger system for actin. Proc. Natl Acad. Sci. USA 87, 1381-1385.CrossRefPubMedGoogle Scholar
  17. Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.CrossRefPubMedGoogle Scholar
  18. Hertzog, M., van Heijenoort, C., Didry, D., Gaudier, M., Coutant, J., Gigant, B., Didelot, G., Preat, T., Knossow, M., Guittet, E. and Carlier, M. F. 2004. The betathymosin/WH2 domain: Structural basis for the switch from inhibition to promotion of actin assembly. Cell 117, 611-623.CrossRefPubMedGoogle Scholar
  19. Huff, T., Muller, C. S. G., Otto, A. M., Netzker, R. and Hannappel, E. 2001. β-Thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33, 205-220.CrossRefPubMedGoogle Scholar
  20. Huff, T., Rosorius, O., Otto, A. M., Muller, C. S., Ballweber, E., Hannappel, E. and Mannherz, H. G. 2004. Nuclear localization of the G-actin sequestering peptide thymosin beta 4. J. Cell Sci. 117, 5333-5341.CrossRefPubMedGoogle Scholar
  21. Huff, T., Zerzawy, D. and Hannappel, E. 1995. Interactions of beta-thymosins, thymosin beta 4-sulfoxide, and N-terminally truncated thymosin beta 4 with actin studied by equilibrium centrifugation, chemical cross-linking and viscometry. Eur. J. Biochem. 230, 650-657.CrossRefPubMedGoogle Scholar
  22. Irobi, E., Aguda, A. H., Larsson, M., Guerin, C., Yin, H. L., Burtnick, L. D., Blanchoin, L. and Robinson, R. C. 2004. Structural basis of actin sequestration by thymosin-beta 4: Implications for WH2 proteins. EMBO J. 23, 3599-3608.CrossRefPubMedGoogle Scholar
  23. Jean, C., Rieger, K., Blanchoin, L., Carlier, M. F., Lenfant, M. and Pantaloni, D. 1994. Interaction of G-actin with thymosin beta 4 and its variants thymosin beta 9 and thymosin beta met9. J. Muscle Res. Cell Motil. 15, 278-286.CrossRefPubMedGoogle Scholar
  24. Li, X., Zimmerman, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Yin, H. L. 1996. The mouse thymosin beta 4 gene: Structure, promoter identification, and chromosome localization. Genomics 32, 388-394.CrossRefPubMedGoogle Scholar
  25. Low, T. L. K., Hu, S. K. and Goldstein, A. L. 1981. Complete amino acid sequence of bovine thymosin beta 4: A thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc. Natl Acad. Sci. USA 78, 1162-1166.CrossRefPubMedGoogle Scholar
  26. Malinda, K. M., Sidhu, G. S., Mani, H., Banaudha, K., Maheshwari, R. K., Goldstein, A. L. and Kleinman, H. K. 1999. Thymosin beta 4 accelerates wound healing. J. Invest. Dermatol. 99, 364-368.CrossRefGoogle Scholar
  27. Matsui, T. and Rosenzweig, A. 2005. Convergent signal transduction pathways controlling cardiomyocyte survival and function: The role of PI 3-kinase and Akt. J. Mol. Cell. Cardiol. 38, 63-71.CrossRefPubMedGoogle Scholar
  28. Pederson, T. and Aebi, U. 2005. Nuclear actin extends, with no contraction in sight. Mol. Biol. Cell 16, 5055-5060.CrossRefPubMedGoogle Scholar
  29. Philp, D., Badamchian, M., Scheremeta, B., Nguyen, M., Goldstein, A. L. and Kleinman, H. K. 2003a. Thymosin beta 4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen. 11, 19-24.CrossRefGoogle Scholar
  30. Philp, D., Huff, T., Gho, Y. S., Hannappel, E. and Kleinman, H. K. 2003b. The actin binding site on thymosin beta 4 promotes angiogenesis. FASEB J. 17, 2103-2105.Google Scholar
  31. Safer, D. and Chowrashi, P. K. 1997. β-thymosins from marine invertebrates: Primary structure and interaction with actin. Cell Motil. Cytoskeleton 38, 163-171.CrossRefGoogle Scholar
  32. Safer, D., Elzinga, M. and Nachmias, V. T. 1991. Thymosin beta 4 and Fx, an actinsequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029-4032.PubMedGoogle Scholar
  33. Safer, D., Sosnick, T. R. and Elzinga, M. 1997. Thymosin beta 4 binds actin in an extended conformation and contacts both the barbed and pointed ends. Biochemistry 36, 5806-5816.CrossRefPubMedGoogle Scholar
  34. Sosne, G., Chan, C. C., Thai, K., Kennedy, M., Szliter, E. A., Hazlett, L. D. and Kleinman, H. K. 2001. Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp. Eye Res. 72, 605-608.CrossRefPubMedGoogle Scholar
  35. Sosne, G., Hafeez, S., Greenberry, A. L. 2nd and Kurpakus-Wheater, M. 2002a. Thymosin beta 4 promotes human conjunctival epithelial cell migration. Curr. Eye Res. 24, 268-273.CrossRefGoogle Scholar
  36. Sosne, G., Szliter, E. A., Barrett, R., Kernacki, K. A., Kleinman, H. and Hazlett, L. D. 2002b. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res. 74, 293-299.CrossRefGoogle Scholar
  37. Vancompernolle, K., Vandekerckhove, J., Bubb, M. R. and Korn, E. D. 1991. The interfaces of actin and Acanthamoeba actobindin - identification of a new actin-binding motif. J. Biol. Chem. 266, 15427-15431.PubMedGoogle Scholar
  38. Van Troys, M., Dewitte, D., Goethals, M., Carlier, M. F., Vandekerckhove, J. and Ampe, C. 1996. The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J. 15, 201-210.PubMedGoogle Scholar
  39. Weber, A., Nachmias, V. T., Pennise, C. R., Pring, M. and Safer, D. 1992. Interaction of thymosin beta 4 with muscle and platelet actin: Implications for actin sequestration in resting platelets. Biochemistry 31, 6179-6185.CrossRefPubMedGoogle Scholar
  40. Wriggers, W., Tang, J. X., Azuma, T., Marks, P. W. and Janmey, P. A. 1998 Cofilin and gelsolin segment-1: Molecular dynamics simulation and biochemical analysis predict a similar actin binding mode. J. Mol. Biol. 282, 921-932.CrossRefPubMedGoogle Scholar
  41. Young, J. D., Lawrence, A. J., MacLean, A. G., Leung, B. P., McInnes, I. B., Canas, B., Pappin, D. J. C. and Stevenson, R. D. 1999. Thymosin beta 4 sulfoxide is an antiinflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 5, 1424-1427.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joshua K. Au
  • Mira Krendel
    • 1
  • Daniel Safer
  • Enrique M. De La Cruz
    • 2
  1. 1.Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuseUSA
  2. 2.Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations