Advertisement

ADF/Cofilin, Actin Dynamics, and Disease

  • Michael T. Maloney
  • Andrew W. Kinley
  • Chi W. Pak
  • James R. Bamburg
Part of the Protein Reviews book series (PRON, volume 8)

The actin-depolymerizing factor (ADF)/cofilin family of actin assembly regulatory proteins is essential for the survival of all eukaryotes including protists, plants, and animals (reviewed in Bamburg 1999). In multicellular organisms, ADF/cofilin (AC) proteins are highly regulated by complex signaling pathways. Multiple strategies of biochemical regulation are utilized including phosphorylation/dephosphorylation, membrane phosphoinositolphosphate binding, pH regulation, accessory proteins that can enhance the effects of AC on actin dynamics, and proteins that compete for actin binding, such as tropomyosins (TMs).

Keywords

Actin Filament Dendritic Spine Williams Syndrome Actin Dynamics Actin Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Nagaoka, R. and Obinata, T. 1993. Cytoplasmic localization and nuclear transport of cofilin in cultured myotubes. Exp. Cell Res. 206, 1-10.PubMedGoogle Scholar
  2. Abe, H., Obinata, T., Minamide, L. S. and Bamburg, J. R. 1996. Xenopus laevis actindepolymerizing factor/cofilin: A phosphorylation-regulated protein essential for development. J. Cell Biol. 871, 885.Google Scholar
  3. Abe, H., Ohshima, S. and Obinata, T. 1989. A cofilin-like protein is involved in the regulation of actin assembly in developing skeletal muscle. J. Biochem. 106, 696-702.PubMedGoogle Scholar
  4. Agnew, B. J., Minamide, L. S. and Bamburg, J. R. 1995. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582-17587.PubMedGoogle Scholar
  5. Aizawa, H., Kishi, Y., Kazuko, I., Sameshima, M. and Yahara, I. 2001. Cofilin-2, a novel type of cofilin, is expressed specifically at aggregation stage of Dictyostelium discoideum development. Genes Cells 6, 913-921.PubMedGoogle Scholar
  6. Aizawa, H., Sutoh, K., Tsubuki, S., Kawashima, S., Ishii, A. and Yahara, I. 1995. Identification, characterization, and intracellular distribution of cofilin in Dictyostelium discoideum. J. Biol. Chem. 270, 10923-10932.PubMedGoogle Scholar
  7. Albinsson, S., Nordstrom, I. and Hellstrand, P. 2004. Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J. Biol. Chem. 279, 34849-34855.PubMedGoogle Scholar
  8. Allbritton, N. L., Meyer, T. and Stryer, L. 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812-1815.PubMedGoogle Scholar
  9. Amano, T., Kaji, N., Ohashi, K. and Mizuno, K. 2002. Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J. Biol. Chem. 277, 22093-22102.PubMedGoogle Scholar
  10. Amano, T., Tanabe, K., Eto, T., Narumiya, S. and Mizuno, K. 2001. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine- 505. Biochem. J. 354, 149-159.PubMedGoogle Scholar
  11. Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C. and Samstag, Y. 2000. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30, 3422-3431.PubMedGoogle Scholar
  12. Aranda-Abreu, G. E., Hernandez, M. E., Soto, A. and Manzo, J. 2005. Possible Cisacting signal that could be involved in the localization of different mRNAs in neuronal axons. Theor. Biol. Med. Model. 2, 33.PubMedGoogle Scholar
  13. Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O. and Caroni, P. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805-809.PubMedGoogle Scholar
  14. Ashworth, S. L., Sandoval, R. M., Hosford, M., Bamburg, J. R. and Molitoris, B. A. 2001. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am. J. Physiol. Renal Physiol. 280, 886-894.Google Scholar
  15. Ashworth, S. L., Southgate, E. L., Sandoval, R. M., Meberg, P. J., Bamburg, J. R. and Molitoris, B. A. 2003a. ADF/cofilin mediates actin cytoskeletal alterations in LLCPK cells during ATP depletion. Am. J. Physiol. Renal Physiol. 284, 852-862.Google Scholar
  16. Ashworth, S. L., Wean, S. E., Campos, S. B., Temm-Grove, C. J., Southgate, E. L., Vrhovski, B., Gunning, P., Weinberger, R. P. and Molitoris, B. A. 2003b. Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments. Am. J. Physiol. Renal Physiol. 286, 988-996.Google Scholar
  17. Atkinson, S. J., Hosford, M. A. and Molitoris, B. A. 2004. Mechanisms of actin polymerization in cellular ATP depletion. J. Biol. Chem. 279, 5194-5199.PubMedGoogle Scholar
  18. Axelrod, D., Ravdin, P., Koppel, D. E., Schlessinger, J., Webb, W. W., Elson, E. L. and Podleski, T. R. 1976. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl Acad. Sci. USA 73, 4594-4598.PubMedGoogle Scholar
  19. Bagrodia, S. and Cerione, R. A. 1999. Pak to the future. Trends Cell Biol. 9, 350-355.PubMedGoogle Scholar
  20. Bakin, A. V., Safina, A., Rimehart, C., Daroqui, C., Darbary, H. and Helfman, D. M. 2004. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol. Biol. Cell 15, 4682-4694.PubMedGoogle Scholar
  21. Balcer, H. I., Goodman, A. L., Rodal, A. A., Smith, E., Kugler, J., Heuser, J. E. and Goode, B. L. 2003. Coordinated regulation of actin filament turnover by a highmolecular-weight Srv2/CAP complex, cofilin, profilin and Aip1. Curr. Biol. 13, 2159-2169.PubMedGoogle Scholar
  22. Baldwin, C. T., Hoth, C. F., Amos, J. A., da-Silva, E. O. and Milunsky, A. 1992. An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 355, 637-638.PubMedGoogle Scholar
  23. Bamburg, J. R. 1999. Proteins of the ADF/cofilin family: Essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185-230.PubMedGoogle Scholar
  24. Bamburg, J. R. and Bray, D. 1987. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105, 2817-2825.PubMedGoogle Scholar
  25. Bamburg, J. R., Harris, H. E. and Weeds, A. G. 1980. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 121, 178-182.PubMedGoogle Scholar
  26. Bamburg, J. R. and Wiggan, O. P. 2002. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12, 598-605.PubMedGoogle Scholar
  27. Barria, A., Derkach, V. and Soderling, T. 1997. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alphaamino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272, 32727-32730.PubMedGoogle Scholar
  28. Barria, A., Muller, D., Derkach, V., Griffith, L. C. and Soderling, T. R. 1997. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042-2045.PubMedGoogle Scholar
  29. Bassell, G. J. and Kelic, S. 2004. Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr. Opin. Neurobiol. 14, 574-581.PubMedGoogle Scholar
  30. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A. and Korenberg, J. R. 1999. Bridging cognition, the brain and molecular genetics: Evidence from Williams syndrome. Trends Neurosci. 22, 197-207.PubMedGoogle Scholar
  31. Belmont, L. D. and Drubin, D. G. 1998. The yeast V159N actin mutant reveals roles for actin dynamics in vivo. J. Cell Biol. 142, 1289-1299.PubMedGoogle Scholar
  32. Benavides-Piccione, R., Ballesteros-Yanez, I., de Lagran, M. M., Elston, G., Estivill, X., Fillat, C., Defelipe, J. and Dierssen, M. 2004. On dendrites in Down syndrome and DS murine models: A spiny way to learn. Prog. Neurobiol. 74, 111-126.PubMedGoogle Scholar
  33. Bentley, D. and Toroian-Raymond, A. 1986. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323,712-715.PubMedGoogle Scholar
  34. Berardelli, A., Rothwell, J. C., Hallet, M., Thompson, P. D., Manfriedi, M. and Marsden, C. D. 1998. The pathophysiology of primary dystonia. Brain 121, 1195-1212.PubMedGoogle Scholar
  35. Bernard, O., Ganiatsas, S., Kannourakis, G. and Dringer, R. 1994. Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons. Cell Growth Differ. 5, 1159-1171.PubMedGoogle Scholar
  36. Bernstein, B. W. and Bamburg, J. R. 1982. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 2, 1-8.PubMedGoogle Scholar
  37. Bernstein, B. W. and Bamburg, J. R. 2003. Actin-ATP hydrolysis is a major energy drain for neurons. J. Neurosci. 23, 1-6.PubMedGoogle Scholar
  38. Bernstein, B. W., Chen, H., Boyle, J. A. and Bamburg, J. R. 2006. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am. J. Physiol. Cell Physiol. 291, C828-C839.PubMedGoogle Scholar
  39. Bernstein, B. W., Painter, W. B., Chen, H., Minamide, L. S., Abe, H. and Bamburg, J. R. 2000. Intracellular pH modulation of ADF/cofilin proteins. Cell Motil. Cytoskeleton 47, 319-336.Google Scholar
  40. Bershadsky, A. D., Gelfand, V. I., Svitkina, T. M. and Tint, I. S. 1980. Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism. Exp. Cell Res. 127, 421-429.PubMedGoogle Scholar
  41. Bershadsky, A. D., Gluck, U., Denisenko, O. N., Sklyarova, T. V., Spector, I. and Ben-Ze’ev, A. 1995. The state of actin assembly regulates actin and vinculin expression by a feedback loop. J. Cell Sci. 108, 1183-1193.PubMedGoogle Scholar
  42. Bertling, E., Hotulainen, P., Matilla, P. K., Tanja, M., Salminen, M. and Lappalainen, P. 2004. Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells. Mol. Biol. Cell 15, 2324-2334.PubMedGoogle Scholar
  43. Beuren, A. J., Apitz, J. and Harmjanz, D. 1962. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 26, 1235-1240.PubMedGoogle Scholar
  44. Bharadwaj, S., Thanawala, R., Bon, G., Falcioni, R. and Prasad, G. L. 2005. Resensitization of breast cancer cells to anoikis by Tropomyosin-1: Role of Rho kinase-dependent cytoskeleton and adhesion. Oncogene 24, 8291-8303.PubMedGoogle Scholar
  45. Bhatia, K. P. and Marsden, C. D. 1994. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859-876.PubMedGoogle Scholar
  46. Bienvenu, T., des Portes, V., McDonell, N., Carrie, A., Zemni, R., Couvert, P., Ropers, H. H., Moraine, C., van Bokhoven, H., Fryns, J. P., Allen, K., Walsh, C. A., Boue, J., Kahn, A., Chelly, J. and Beldjord, C. 2000. Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. Am. J. Med. Genet. 93, 294-298.PubMedGoogle Scholar
  47. Bierne, H., Gouin, E., Roux, P., Caroni, P., Yin, H. L. and Cossart, P. 2001. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Cell Biol. 155, 101-112.PubMedGoogle Scholar
  48. Birkenfield, J., Betz, H. and Roth, D. 2003. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta. Biochem. J. 369, 45-54.Google Scholar
  49. Blanchoin, L. and Pollard, T. D. 1998. Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin. J. Biol. Chem. 273, 25106-25111.PubMedGoogle Scholar
  50. Blanchoin, L. and Pollard, T. D. 1999. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J. Biol. Chem. 274, 15538-15546.PubMedGoogle Scholar
  51. Blanchoin, L., Pollard, T. D. and Hitchcock-DeGregori, S. E., 2001. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11, 1300-1304.PubMedGoogle Scholar
  52. Blanchoin, L., Robinson, R. C., Choe, S. and Pollard, T. D. 2000. Phosphorylation of Acanthamoeba actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure. J. Mol. Biol. 295, 203-11.PubMedGoogle Scholar
  53. Blikstad, I., Markey, F., Carlsson, L., Perssin, T. and Lindberg, U. 1978. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15, 935-943.PubMedGoogle Scholar
  54. Bobkov, A. A., Muhlrad, A., Shvetsov, A., Benchaar, S., Scoville, D., Almo, S. C. and Reisler, E. 2004. Cofilin (ADF) affects lateral contacts in F-actin. J. Mol. Biol. 337, 93-104.PubMedGoogle Scholar
  55. Boengler, K., Pipp, F., Broich, K., Fernandez, B., Schaper, W. and Deindl, E. 2003. Identification of differentially expressed genes like cofilin2 in growing collateral arteries. Biochem. Biophys. Res. Commun. 300, 751-756.PubMedGoogle Scholar
  56. Bryce, N. S., Clark, E. S., Leysath, J. L., Currie, J. D., Webb, D. J. and Weaver, A. M. 2005. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr. Biol. 15, 1276-1285.PubMedGoogle Scholar
  57. Bryce, N. S., Schevzov, G., Ferguson, V., Percival, J. M., Lin, J. J.-C., Matsumura, F., Bamburg, J. R., Jeffrey, P. L., Hardeman, E. C., Gunning, P. and Weinberger, R. P. 2003. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14, 1002-1016.PubMedGoogle Scholar
  58. Burtnick, L. D., Urosev, D., Irobi, E., Narayan, K. and Robinson, R. C. 2004. Structure of the N-terminal half of gelsolin bound to actin: Roles in severing, apoptosis and FAF. EMBO J. 23, 2713-2722.PubMedGoogle Scholar
  59. Buss, F., Temm-Grove, C., Henning, S. and Jockusch, B. M. 1992. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskeleton 22, 51-61.PubMedGoogle Scholar
  60. Calverley, R. K. and Jones, D. G. 1990. Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res. Brain Res. Rev. 15, 215-249.PubMedGoogle Scholar
  61. Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. and Borisy, G. G. 2001. Dendritic organization of actin comet tails. Curr. Biol. 11, 130-135.PubMedGoogle Scholar
  62. Campbell, D. S. and Holt, C. E. 2001. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013-1026.PubMedGoogle Scholar
  63. Cantiello, H. F. 1997. Role of actin filament organization in cell volume and ion channel regulation. J. Exp. Zool. 279, 425-435.PubMedGoogle Scholar
  64. Carlier, M. F. 1989. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int. Rev. Cytol. 115, 139-170.PubMedGoogle Scholar
  65. Carlier, M. F. 1991. Actin: Protein structure and filament dynamics. J. Biol. Chem. 266,1-4.PubMedGoogle Scholar
  66. Carlier, M. F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.-X., Hong, Y., Chua, N.-H. and Pantaloni, D. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility. J. Cell Biol. 136, 1307-1322.PubMedGoogle Scholar
  67. Carlier, M. F., Wiesner, S., Le Clainche, C. and Pantaloni, D. 2003. Actin-based motility as a self-organized system: Mechanism and reconstitution in vitro. Crit. Rev. Biol. 326, 161-170.Google Scholar
  68. Carmeliet, P. and Jain, R. K. 2000. Angiogenesis in cancer and other diseases. Nature 407,249-257.PubMedGoogle Scholar
  69. Cartier, L., Galvez, S. and Gajdusek, D. C. 1985. Familial clustering of the ataxic form of Creutzfeldt-Jakob disease with Hirano bodies. J. Neurol. Neurosurg. Psychiatry 48, 234-238.PubMedGoogle Scholar
  70. Castets, M., Schaeffer, C., Bechara, E., Schenck, A., Khandjian, E. W., Luche, S., Moine, H., Rabilloud, T., Mandel, J. L. and Bardoni, B. 2005. FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibrob-lasts. Hum. Mol. Genet. 14, 835-844.PubMedGoogle Scholar
  71. Chan, A. Y., Bailly, M., Zebda, N., Segall, J. E. and Condeelis, J. S. 2000. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J. Cell Biol. 148, 531-542.PubMedGoogle Scholar
  72. Chang, S. H., Poser, S. and Xia, Z. 2004. A novel role for serum response factor in neuronal survival. J. Neurosci. 24, 2277-2285.PubMedGoogle Scholar
  73. Chartier-Harlin, M. C., Crawford, F., Hamandi, K., Mullan, M., Goate, A., Hardy, J., Backhovens, H., Martin, J. J. and Broeckhoven, C. V. 1991a. Screening for the betaamyloid precursor protein mutation (APP717: Val-Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci. Lett. 129, 134-135.Google Scholar
  74. Chartier-Harlin, M. C., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., Goate, A., Rossor, M., Roques, P., Hardy, J. and Mullan, M. 1991b. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844-846.Google Scholar
  75. Chen, H., Bernstein, B. W. and Bamburg, J. R. 2000. Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19-23.PubMedGoogle Scholar
  76. Chen, H., Bernstein, B. W., Sneider, J. M., Boyle, J. A., Minamide, L. S. and Bamburg, J. R. 2004. In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups. Biochemistry 43, 7127-7142.PubMedGoogle Scholar
  77. Chen, Y. H., Chen, S. H.-M., Jong, A., Zhou, Z. Y., Li, W., Suzuki, K. and Huang, S.-H. 2002. Enhanced Escherichia coli invasion of human brain microvascular endothelial cells is associated with alternations in cytoskeleton induced by nicotine. Cell. Microbiol. 4, 503-514.PubMedGoogle Scholar
  78. Chen, J., Cohn, J. A. and Mandel, L. J. 1995. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc. Natl Acad. Sci. USA 92,7495-7499.PubMedGoogle Scholar
  79. Chen, J., Doctor, R. B. and Mandel, L. J., 1994. Cytoskeletal dissociation of ezrin during renal anoxia: Role in microvillar injury. Am. J. Physiol. 267, 784-795.Google Scholar
  80. Chen, J., Godt, D., Gunsalus, K., Kiss, I., Goldberg, M. and Laski, F. A. 2001. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nat. Cell Biol. 3, 204-209.PubMedGoogle Scholar
  81. Chen, W., Ji, J. and Ru, B. 2005. Proteomic analysis of corticobasal degeneration: A case study of corticobasal degeneration at the proteome level. J. Neuropsychiatry Clin. Neurosci. 17, 364-371.PubMedGoogle Scholar
  82. Chen, X. and Macara, I. G. 2005. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262-269.PubMedGoogle Scholar
  83. Chen, X. and Macara, I. G. 2006. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J. Cell Biol. 172, 671-678.PubMedGoogle Scholar
  84. Chen, S. H., Stins, M. F., Huang, S.-H., Chen, Y. H., Kwon-Chung, K. J., Chang, Y., Kim, K. S., Suzuki, K. and Jong, A. Y. 2003. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J. Med. Microbiol. 52, 961-970.PubMedGoogle Scholar
  85. Chernoff, N. and Rogers, J. M. 2004. Supernumerary ribs in developmental toxicity bioassays and in human populations: Incidence and biological significance. J. Toxicol. Environ. Health B. Crit. Rev. 7, 437-449.PubMedGoogle Scholar
  86. Chhabra, D. and dos Remedios, C. G. 2005. Cofilin, actin and their complex observed in vivo using fluorescence resonance energy transfer. Biophys. J. 89, 1902-1908.PubMedGoogle Scholar
  87. Chi, N. and Epstein, J. A. 2002. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 18(1), 41-47.PubMedGoogle Scholar
  88. Chua, B. T., Volbracht, C., Tan, K. O., Li, R., Yu, V. C. and Li, P. 2003. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat. Cell Biol. 5, 1083-1089.PubMedGoogle Scholar
  89. Clark, E. A., Golub, T. R., Lander, E. S. and Hyns, R. O. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535.PubMedGoogle Scholar
  90. Clarkson, E., Costa, C. F. and Machesky, L. M. 2004. Congenital myopathies: Diseases of the actin cytoskeleton. J. Pathol. 204, 407-417.PubMedGoogle Scholar
  91. Cooper, J. A. and Schafer, D. A. 2000. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97-103.PubMedGoogle Scholar
  92. Corbett, M. A., Akkari, P. A., Domazetovska, A., Cooper, S. T., North, K. N., Laing, N. G., Gunning, P. W. and Hardeman, E. C. 2005. An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann. Neurol. 57, 42-49.PubMedGoogle Scholar
  93. Corneal Disease Panel. 1983. Vision Research - A National Plan: 1983-1987, vol. 2. US Department of Health and Human Services. pp. 1-59.Google Scholar
  94. Cossart, P. 2000. Actin-based motility of pathogens: The Arp2/3 complex is a central player. Cell. Microbiol. 2, 195-205.PubMedGoogle Scholar
  95. Cossart, P. and Sansonetti, P. J. 2004. Bacterial invasion: The paradigms of enteroinvasive pathogens. Science 304, 242-248.PubMedGoogle Scholar
  96. Cramer, L. P. 1999. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr. Biol. 9, 1095-1105.PubMedGoogle Scholar
  97. Cristofanilli, M., Charnsangavej, C. and Hortobagyi, G. N. 2002. Angiogenesis modulation in cancer research: Novel clinical approaches. Nat. Rev. Drug Discov. 1, 415-426.PubMedGoogle Scholar
  98. Culebras, A., Feldman, R. G. and Merk, F. B. 1973. Cytoplasmic inclusion bodies within neurons of the thalamus in myotonic dystrophy. A light and electron microscope study. J. Neurol. Sci. 19, 319-329.PubMedGoogle Scholar
  99. Curran, M. E., Atkinson, D. L., Ewart, A. K., Morris, C. A., Leppert, M. F. and Keating, M. T. 1993. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 73, 159-168.PubMedGoogle Scholar
  100. Cutler, T. J. 2004. Corneal epithelial disease. Vet. Clin. North Am. Equine Pract. 20, 319-343.PubMedGoogle Scholar
  101. Dahl, E., Koseki, H. and Balling, R. 1997. Pax genes and organogenesis. Bioessays 19(9),755-765.PubMedGoogle Scholar
  102. Dai, S., Sarmiere, P. D., Wiggan, O., Bamburg, J. R. and Zhou, D. 2004. Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell. Microbiol. 6 (5),459-471.PubMedGoogle Scholar
  103. Dailey, M. E. and Smith, S. J. 1996. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983-2994.PubMedGoogle Scholar
  104. Dalby-Payne, J. R., O’Loughlin, E. V. and Gunning, P. 2003. Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface. Mol. Biol. Cell 14, 4365-4375.PubMedGoogle Scholar
  105. Dan, C., Kelly, A., Bernard, O. and Minden, A. 2001. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 276, 32115-32121.Google Scholar
  106. Dang, D., Bamburg, J. R. and Ramos, D. M. 2006. alphavbeta3 integrin and cofilin modulate K1735 melanoma cell invasion. Exp. Cell Res. 312, 468-477.PubMedGoogle Scholar
  107. Daniel, J. L., Molish, I. R., Robkin, L. and Holmsen, H. 1986. Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets. Eur. J. Biochem. 156, 677-684.PubMedGoogle Scholar
  108. Daniels, R. H., Hall, P. S. and Bokoch, G. M. 1998. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754-764.PubMedGoogle Scholar
  109. Darnell, J. C., Jensen, K. B., Jin, P., Brown, V., Warren, S. T. and Darnell, R. B. 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489-499.PubMedGoogle Scholar
  110. David, V., Gouin, E., Troys, M. V., Grogan, A., Segal, A. W., Ampe, C. and Cossart, P. 1998. Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J. Cell Sci. 111, 2877-2884.PubMedGoogle Scholar
  111. Davila, M., Frost, A. R., Grizzle, W. E. and Chakrabarti, R. 2003. LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: Implications in prostate cancer. J. Biol. Chem. 278, 36868-36875.PubMedGoogle Scholar
  112. Dawe, H. R., Minamide, L. S., Bamburg, J. R. and Cramer, L. P. 2003. ADF/cofilin controls cell polarity during fibroblast migration. Curr. Biol. 13, 252-257.PubMedGoogle Scholar
  113. Derkach, V., Barria, A. and Soderling, T. R. 1999. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl Acad. Sci. USA 96, 3269-3274.PubMedGoogle Scholar
  114. DesMarais, V., Ghosh, M., Eddy, R. and Condeelis, J. 2005. Cofilin takes the lead. J. Cell Sci. 118, 19-26.PubMedGoogle Scholar
  115. Devineni, N., Minamide, L. S., Niu, M., Safer, D., Verma, R., Bamburg, J. R. and Nachmias, V. T. 1999. A quantitative analysis of G-actin binding proteins and the G-actin pool in developing chick brain. Brain Res. 823, 129-140.PubMedGoogle Scholar
  116. Didry, D., Carlier, M.-F. and Pantaloni, D. 1998. Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J. Biol. Chem. 273,25602-25611.PubMedGoogle Scholar
  117. Ding, S. J., Li, Y., Shao, X.-X., Zhou, H., Zeng, R., Tang, Z.-Y. and Xia, X.-C. 2004. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 4, 982-994.PubMedGoogle Scholar
  118. Doe, C. Q. 2001. Cell polarity: The PARty expands. Nat. Cell Biol. 3, 7-9.Google Scholar
  119. Dominguez, R. 2004. Actin-binding proteins - A unifying hypothesis. Trends Biochem. Sci. 29, 572-578.PubMedGoogle Scholar
  120. Drubin, D. G., Mulholland, J., Zhu, Z. M. and Botstein, D. 1990. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature 343,288-290.PubMedGoogle Scholar
  121. Dua, H. S. and Forrester, J. V. 1990. The corneoscleral limbus in human corneal epithelial wound healing. Am. J. Ophthalmol. 110, 646-656.PubMedGoogle Scholar
  122. Dufour, C., Weinberger, R. P. and Gunning, P. 1998. Tropomyosin isoform diversity and neuronal morphogenesis. Immunol. Cell Biol. 76, 424-429.PubMedGoogle Scholar
  123. Dumont, P., Burton, M., Chen, Q. M., Gonos, E. S., Frippiat, C., Mazarati, J. B., Eliaers, F., Remacle, J. and Toussaint, O. 2000. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic. Biol. Med. 28, 361-373.PubMedGoogle Scholar
  124. Eaton, B. A. and Davis, G. W. 2005. LIM Kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47, 695-708.PubMedGoogle Scholar
  125. Edwards, D. C. and Gill, G. N. 1999. Structural features of LIM kinase that control effects on the actin cytoskeleton. J. Biol. Chem. 274, 11352-11361.Google Scholar
  126. Edwards, D. C., Sanders, L. C., Bokoch, G. M. and Gill, G. N. 1999. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253-259.PubMedGoogle Scholar
  127. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsez, E., Gold, D., Goldman, D., Dean, M., Lu, B. and Weinberger, D. R. 2003. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-269.PubMedGoogle Scholar
  128. Ehehalt, R., Keller, P., Haass, C., Thiele, C. and Simons, K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113-123.PubMedGoogle Scholar
  129. Eibert, S. M., Lee, K.-H., Pipkorn, R., Sester, U., Wabnitz, G. H., Giese, T., Meuer, S. C. and Samstag, Y. 2004. Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc. Natl Acad. Sci. USA 101, 1957-1962.PubMedGoogle Scholar
  130. Endo, M., Ohashi, K., Sasaki, Y., Goshima, Y., Niwa, R., Uemura, T. and Mizuno, K. 2003. Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin. J. Neurosci. 23, 2527-2537.PubMedGoogle Scholar
  131. English, D., Garcia, D. J. and Brindley, D. N. 2001. Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc. Res. 49, 588-599.PubMedGoogle Scholar
  132. Erpel, T. and Courtneidge, S. A. 1995. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr. Opin. Cell Biol. 7, 176-182.PubMedGoogle Scholar
  133. Eugene, E., Hoffmann, I., Pujol, C., Couraud, P.-O., Bourdoelous, S. and Nass, X. 2002. Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells. J. Cell Sci. 115, 1231-1241.PubMedGoogle Scholar
  134. Ewart, A. K., Jin, W., Atkinson, D., Morris, C. A. and Keating, M. T. 1994. Supravalvular aortic stenosis associated with a deletion disrupting the elastin gene. J. Clin. Invest. 93, 1071-1077.PubMedGoogle Scholar
  135. Ewart, A. K., Morris, C. A., Atkinson, D., Jin, W., Sternes, K., Spallone, P., Stock, A. D., Leppert, M. and Keating, M. T. 1993. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat. Genet. 5, 11-16.PubMedGoogle Scholar
  136. Fahn, S., Bressman, S. B. and Marsden, C. D. 1998. Classification of dystonia. Adv. Neurol. 78, 1-10.PubMedGoogle Scholar
  137. Falet, H., Chang, G., Brohard-Bohn, B., Rendu, F. and Hartwig, J. H. 2005. Integrin alpha(IIb)beta3 signals lead cofilin to accelerate platelet actin dynamics. Am. J. Physiol. Cell Physiol. 289, 819-825.Google Scholar
  138. Fedorov, A. A., Lappalainen, P., Federov, E. V., Drubin, D. G. and Almo, S. C. 1997. Structure determination of yeast cofilin. Nat. Struct. Biol. 4, 366-369.PubMedGoogle Scholar
  139. Fernandez, R., Fernandez, J. M., Cerva, C., Teijiera, S., Teijeiro, A., Dominguez, C. and Navarro, C. 1999. Adult glycogenosis II with paracrystalline mitochondrial inclusions and Hirano bodies in skeletal muscle. Neuromuscul. Disord. 9, 136-143.PubMedGoogle Scholar
  140. Fiala, J. C., Feinberg, M., Popov, V. and Harris, K. M. 1998. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900-8911.PubMedGoogle Scholar
  141. Field, E. J., Mathews, J. D. and Raine, C. S. 1969. Electron microscopic observations on the cerebellar cortex in kuru. J. Neurol. Sci. 8, 209-224.PubMedGoogle Scholar
  142. Field, E. J. and Narang, H. K. 1972. An electron-microscopic study of scrapie in the rat, further observations on “inclusion bodies” and virus-like particles. J. Neurol. Sci. 17, 347-364.PubMedGoogle Scholar
  143. Fincham, V. J., James, M., Frame, M. C. and Winder, S. J. 2000. Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J. 19, 2911-2923.PubMedGoogle Scholar
  144. Fishkind, D. J. and Wang, Y. L. 1995. New horizons for cytokinesis. Curr. Opin. Cell Biol. 7, 23-31.PubMedGoogle Scholar
  145. Frangiskakis, J. M., Ewart, A. K., Morris, C. A., Mervis, C. B., Bertrand, J., Robinson, B. F., Klein, B. P., Ensing, G. J., Everett, L. A., Green, E. D., Prochel, C., Gutowski, N. J., Noble, M., Atkinson, D. L., Odelberg, S. J. and Keating, T. M. 1996. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59-69.PubMedGoogle Scholar
  146. Fraser, H. 1969. Eosinophilic bodies in some neurones in the thalamus of ageing mice. J. Pathol. 98, 201-204.PubMedGoogle Scholar
  147. Frischknecht, F., Cudmore, S., Moreau, V., Reckmann, I., Rottger, S. and Way, M. 1999. Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr. Biol. 9, 89-92.PubMedGoogle Scholar
  148. Fu, H., Subramanian, R. R. and Masters, S. C. 2000. 14-3-3 proteins: Structure, function and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617-647.PubMedGoogle Scholar
  149. Fu, Y., Ward, J. and Young, H. F. 1975. Unusual, rod-shaped cytoplasmic inclusions (Hirano bodies) in a cerebellar hemangioblastoma. Acta Neuropathol. 31, 129-135.PubMedGoogle Scholar
  150. Fujibuchi, T., Abe, Y., Takeuchi, T., Imai, Y., Kamei, Y., Murase, R., Ueda, N., Shigemoto, K., Yamamoto, H. and Kito, K. 2005. AIP1/WDR1 supports mitotic cell rounding. Biochem. Biophys. Res. Commun. 327, 268-275.PubMedGoogle Scholar
  151. Fukui, Y. 1978. Intranuclear actin bundles induced by dimethyl sulfoxide in interphase nucleus of Dictyostelium. J. Cell Biol. 76, 146-157.PubMedGoogle Scholar
  152. Fukui, Y. and Katsumaru, H. 1979. Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp. Cell Res. 120, 451-455.PubMedGoogle Scholar
  153. Galan, J. E. and Zhou, D. 2000. Striking a balance: Modulation of the actin cytoskeleton by Salmonella. Proc. Natl Acad. Sci. USA 97, 8754-8761.PubMedGoogle Scholar
  154. Galkin, V. E., Orlova, A., Lukoyanova, N., Wriggers, W. and Egelman, E. H. 2001. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75-86.PubMedGoogle Scholar
  155. Galkin, V. E., Orlova, A., VanLoock, M. S., Shvetsov, A., Reisler, E., Egelman, E. H. 2003. ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments. J. Cell Biol. 163, 1057-1066.PubMedGoogle Scholar
  156. Galkin, V. E., VanLoock, M. S., Orlova, A. and Egelman, E. H. 2002. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin’s sequence and structure. Curr. Biol. 12, 570-575.PubMedGoogle Scholar
  157. Galloway, P. G., Perry, G. and Gambetti, P. 1987. Hirano body filaments contain actin and actin-associated proteins. J. Neuropathol. Exp. Neurol. 46, 185-199.PubMedGoogle Scholar
  158. Galvez, R. and Greenough, W. T. 2005. Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile X mental retardation syndrome. Am. J. Med. Genet. 135, 155-160.PubMedGoogle Scholar
  159. Garcia, J. G., Liu, F., Verin, A. D., Birukova, A., Dechert, M. A., Gerthoffer, W. T., Bamburg, J. R. and English, D. 2001. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest. 108, 689-701.PubMedGoogle Scholar
  160. Garcia, J. G. and Schaphorst, K. L. 1995. Regulation of endothelial cell gap formation and paracellular permeability. J. Investig. Med. 43, 117-126.PubMedGoogle Scholar
  161. Gearing, M., Juncos, J. L., Procaccio, V., Gutekunst, C.-A., Marino-Rodriguez, E. M., Gyure, K. A., Ono, S., Santoianni, R., Kraweicki, M. S., Wallace, D. C. and Wainer, B. H. 2002. Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia. Ann. Neurol. 52, 465-476.PubMedGoogle Scholar
  162. Gebuhr, T. C., Kovalev, G. I., Bultman, S., Godfrey, V., Su, L. and Magnuson, T. 2003. The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J. Exp. Med. 198, 1937-1949.PubMedGoogle Scholar
  163. Gedeon, A. K., Nelson, J., Gecz, J. and Mulley, J. C. 2003. X-linked mild nonsyndromic mental retardation with neuropsychiatric problems and the missense mutation A365E in PAK3. Am. J. Med. Genet. A 120, 509-517.Google Scholar
  164. Gehler, S., Shaw, A. E., Sarmiere, P. D., Bamburg, J. R. and Letourneau, P. C. 2004. Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J. Neurosci. 24, 10741-10749.PubMedGoogle Scholar
  165. Geinisman, Y., Berry, R. W., Disterhoft, J. F., Power, J. M. and Van der Zee, E. A. 2001. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci. 21, 5568-5573.PubMedGoogle Scholar
  166. Geneste, O., Copeland, J. W. and Treisman, R. 2002. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157, L831-L838.Google Scholar
  167. Gessaga, E. C. and Anzil, A. P. 1975. Rod-shaped filamentous inclusions and other ultrastructural features in a cerebellar astrocytoma. Acta Neuropathol. 33, 119-127.PubMedGoogle Scholar
  168. Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S. and Condeelis, J. S. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743-746.PubMedGoogle Scholar
  169. Giansanti, M. G., Bonaccorsi, S., Williams, B., Williams, W. V., Santolamazza, C., Goldberg, M. L. and Gatti, M. 1998. Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev. 12, 396-410.PubMedGoogle Scholar
  170. Gibson, P. H. and Tomlinson, B. E. 1977. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J. Neurol. Sci. 33,199-206.PubMedGoogle Scholar
  171. Glotzer, M. 2001. Animal cell cytokinesis. Annu. Rev. Cell Dev. Biol. 17, 351-386.PubMedGoogle Scholar
  172. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, R., Roquis, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., Owen, M. and Hardy, J. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704-706.PubMedGoogle Scholar
  173. Gohla, A., Birkenfeld, J. and Bokoch, G. M. 2005. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7, 21-29.PubMedGoogle Scholar
  174. Gohla, A. and Bokoch, G. M. 2002. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 12, 1704-1710.PubMedGoogle Scholar
  175. Goldberg, M. B. 2001. Actin-based motility of intracellular microbial pathogens. Microbiol. Mol. Biol. Rev. 65, 595-626.PubMedGoogle Scholar
  176. Goode, B. L., Drubin, D. G. and Barnes, G. 2000. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63-71.PubMedGoogle Scholar
  177. Goode, B. L., Drubin, D. G. and Lappalainen, P. 1998. Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomersequestering protein. J. Cell Biol. 142, 723-733.PubMedGoogle Scholar
  178. Gorbatyuk, V. Y., Nosworthy, N. J., Robson, S. A., Bains, N. P. S., Maciejewski, M. W., dos Remedios, C. G. and King, G. F. 2006. Mapping of a novel phosphoinositide binding site on chick cofilin explains how PIP2 regulated the cofilin-actin interaction. Mol. Cell 24, 511-522.PubMedGoogle Scholar
  179. Gotz, R., Wiese, S., Takayama, S., Camarero, G. C., Rossoll, W., Schweizer, U., Troppmair, J., Jablonka, S., Holtmann, B., Reed, J. C., Rapp, U. R. and Sendtner, M. 2005. Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat. Neurosci. 8, 1169-1178.PubMedGoogle Scholar
  180. Gourlay, C. W. and Ayscough, K. R. 2005. A role for actin in aging and apoptosis. Biochem. Soc. Trans. 33, 1260-1264.PubMedGoogle Scholar
  181. Govek, E. E., Newey, S. E., Akerman, C. J., Cross, J. R., Van der Veken, L. and Van Aelst, L. 2004. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat. Neurosci. 7, 364-372.PubMedGoogle Scholar
  182. Green, D. R. and Evan, G. I. 2002. A matter of life and death. Cancer Cell 1, 19-30.PubMedGoogle Scholar
  183. Greenough, W. T., Klintsova, A. Y., Irwin, S. A., Galvez, R., Bates, K. E. and Weiler, I. J. 2001. Synaptic regulation of protein synthesis and the fragile X protein. Proc. Natl Acad. Sci. USA 98, 7101-7106.PubMedGoogle Scholar
  184. Grimme, S. J., Gao, X.-D., Martin, P. S., Tu, K., Tcheperegine, S. E., Corrado, K., Farewell, A. E., Orlean, P. and Bi, E. 2004. Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation. Mol. Biol. Cell 15, 2758-2770.PubMedGoogle Scholar
  185. Grosse, R., Copeland, J. W., Newsome, T. P., Way, M. and Treisman, R. 2003. A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity. EMBO J. 22, 3050-3061.PubMedGoogle Scholar
  186. Gunning, P. W., Schevzov, G., Kee, A. J. and Hardeman, E. C. 2005. Tropomyosin isoforms: Divining rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341.PubMedGoogle Scholar
  187. Gunsalus, K. C., Bonaccorsi, S., Williams, E., Verni, F., Gatti, M. and Goldberg, M. L. 1995. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol. 131, 1243-1259.PubMedGoogle Scholar
  188. Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., HitchcockDeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D. and WatermanStorer, C. M. 2005. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168, 619-631.PubMedGoogle Scholar
  189. Gurniak, C. B., Perlas, E. and Witke, W. 2005. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol. 278, 231-241.PubMedGoogle Scholar
  190. Gutsche-Perelroizen, I., Lepault, J., Ott, A. and Carlier, M. F. 1999. Filament assembly from profilin-actin. J. Biol. Chem. 274, 6234-6243.PubMedGoogle Scholar
  191. Guttman, J. A., Obinata, T., Shima, J., Griswold, M. and Vogl, A. W. 2004. Nonmuscle cofilin is a component of tubulobulbar complexes in the testis. Biol. Reprod. 70, 805-812.PubMedGoogle Scholar
  192. Guttman, J. A., Takai, Y. and Vogl, A. W. 2004. Evidence that tubulobulbar complexes in the seminiferous epithelium are involved with internalization of adhesion junctions. Biol. Reprod. 71, 548-559.PubMedGoogle Scholar
  193. Hadfield, M. G., Martinez, A. J. and Gilmartin, R. C. 1974. Progressive multifocal leukoencephalopathy with paramyxovirus-like structures, Hirano bodies and neurogibrillary tangles. Acta Neuropathol. (Berl.) 27(4), 277-288.Google Scholar
  194. Hannan, A. J., Schevzov, G., Gunning, P., Jeffrey, P. L. and Weinberger, R. P. 1995. Intracellular localization of tropomyosin mRNA and protein is associated with development of neuronal polarity. Mol. Cell. Neurosci. 6, 397-412.PubMedGoogle Scholar
  195. Hardy, J. and Selkoe, D. J. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297, 353-356.PubMedGoogle Scholar
  196. Harris, K. M. 1999a. Calcium from internal stores modifies dendritic spine shape. Proc. Natl Acad. Sci. USA 96, 12213-12215.Google Scholar
  197. Harris, K. M. 1999b. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343-348.Google Scholar
  198. Harris, K. M. and Stevens, J. K. 1998. Dendritic spines of rat cerebellar Purkinje cells: Serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 8, 4455-4469.Google Scholar
  199. Hatanaka, K., Li, X. A., Masuda, K., Yutani, C. and Yamamoto, A. 1995. Immunohistochemical localization of C-reactive protein-binding sites in human atherosclerotic aortic lesions by a modified streptavidin-biotin-staining method. Pathol. Int. 45, 635-641.PubMedGoogle Scholar
  200. Hatanaka, H., Ogura, K., Moriyama, K., Ichikawa, S., Yahara, I. and Inagaki, F. 1996. Tertiary structure of destrin and structural similarity between two actinregulating protein families. Cell 85, 1047-1055.PubMedGoogle Scholar
  201. Hawkins, M., Pope, B., Maciver, S. K. and Weeds, A. G. 1993. Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32, 9985-9993.PubMedGoogle Scholar
  202. Hayden, S. M., Miller, P. S., Brauweiler, A. and Bamburg, J. R. 1993. Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32, 9994-10004.PubMedGoogle Scholar
  203. Heimann, K., Percival, J. M., Weinberger, R., Gunning, P. and Stow, J. L. 1999. Specific isoforms of actin-binding proteins on distinct populations of Golgiderived vesicles. J. Biol. Chem. 274, 10743-10750.PubMedGoogle Scholar
  204. Hendricks, K. B., Shanahan, F. and Lees, E. 2004. Role for BRG1 in cell cycle control and tumor suppression. Mol. Cell. Biol. 24, 362-376.PubMedGoogle Scholar
  205. Heynen, A. J., Quinlan, E. M., Bae, D. C. and Bear, M. F. 2000. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527-536.PubMedGoogle Scholar
  206. Hirano, A. 1994. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3-11.PubMedGoogle Scholar
  207. Hirano, A., Dembitzer, H. M., Kurland, L. T. and Zimmerman, H. M. 1968. The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and “rod-like”structures as seen in Guam amyotrophic lateral sclerosis and Parkinsonism-dementia complex. J. Neuropathol. Exp. Neurol. 27, 167-182.PubMedGoogle Scholar
  208. Hiraoka, J., Okano, I., Higuchi, O., Yang, N. and Mizuno, K. 1996. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain. FEBS Lett. 399, 117-121.PubMedGoogle Scholar
  209. Hiruma, H., Katakura, T., Takahashi, S., Ichikawa, T. and Kawakami, T. 2003. Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J. Neurosci. 23, 8967-8977.PubMedGoogle Scholar
  210. Ho, K. L. and Allevato, P. A. 1986. Hirano body in an inflammatory cell of leptomeningeal vessel infected by fungus Paecilomyces. Acta Neuropathol. 71, 159-162.PubMedGoogle Scholar
  211. Hofmann, W., Reichart, B., Ewald, A., Müller, E., Schmitt, I., Stauber, R. H., Lottspeich, F., Jockusch, B. M., Scheer, U., Hauber, J. and Dabauvalle, M.-C. 2001. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell Biol. 152, 895-910.PubMedGoogle Scholar
  212. Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W. and Svoboda, K. 2005. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279-291.PubMedGoogle Scholar
  213. Hoogenraad, C. C., Akhmanova, A., Galjart, N. and De Zeeuw, C. I. 2004. LIMK1 and CLIP-115: Linking cytoskeletal defects to Williams syndrome. Bioessays 26, 141-150.PubMedGoogle Scholar
  214. Hoogenraad, C. C., Koekkoek, B., Akhmanova, A., Krugers, H., Dortland, B., Miedema, M., van Alphen, A., Kistler, W. M., Jaegle, M., Doutsourakis, M., Van Camp, N., Verhoye, M., van der Linder, A., Kaverina, I., Grosveld, F., De Zeeuw, C. I. and Galjart, N. 2002. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat. Genet. 32, 116-127.PubMedGoogle Scholar
  215. Hotulainen, P., Paunola, E., Vartiainen, M. K. and Lappalainen, P. 2005. Actindepolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649-664.PubMedGoogle Scholar
  216. Hughes, J. A., Cooke-Yarborough, C. M., Chadwick, N. C., Schevzov, G., Arbuckle, S. M., Gunning, P. and Weinberger, R. P. 2003. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42, 25-35.PubMedGoogle Scholar
  217. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. and Grant, S. G. 2000. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661-669.PubMedGoogle Scholar
  218. Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G. J., Condeelis, J. and Singer, R. H. 2005. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512-515.PubMedGoogle Scholar
  219. Huttenlocher, P. R. 1970. Dendritic development and mental defect. Neurology 20,381.PubMedGoogle Scholar
  220. Huttenlocher, P. R. 1975. Synaptic and dendritic development and mental defect. UCLA Forum Med. Sci. 18, 123-140.Google Scholar
  221. Ichetovkin, I., Grant, W. and Condeelis, J. 2002. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79-84.PubMedGoogle Scholar
  222. Iida, K., Iida, H. and Yahara, I. 1986. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp. Cell Res. 165, 207-215.PubMedGoogle Scholar
  223. Iida, K., Matsumoto, S. and Yahara, I. 1992. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 17, 39-46.PubMedGoogle Scholar
  224. Iida, K., Moriyama, K., Matsumoto, S., Kawasaki, H., Nixhida, E. and Yahara, I. 1993. Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene 124,115-120.PubMedGoogle Scholar
  225. Iida, K. and Yahara, I. 1986. Reversible induction of actin rods in mouse C3H-2K cells by incubation in salt buffers and by treatment with non-ionic detergents. Exp Cell Res. 164, 492-506.PubMedGoogle Scholar
  226. Ikebe, C., Ohashi, K., Fujimori, T., Bernard, O., Noda, T., Robvertson, E. J. and Mizuno, K. 1997. Mouse LIM-kinase 2 gene: cDNA cloning, genomic organization, and tissue-specific expression of two alternatively initiated transcripts. Genomics 46, 504-508.PubMedGoogle Scholar
  227. Ikeda, S., Cunningham, L. A., Boggers, D., Hobson, C. D., Sundberg, J. P., Naggert, J. K., Smith, R. S. and Nishina, P. M. 2003. Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum. Mol. Genet. 12, 1029-1037.PubMedGoogle Scholar
  228. Ilkovski, B., Nowak, K. J., Domazetovska, A., Maxwell, A. L., Clement, S., Davies, K. E., Laing, N. G., North, K. N. and Cooper, S. T. 2004. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggre-gation and altered polymerization of mutant actin isoforms. Hum. Mol. Genet. 13, 1727-1743.PubMedGoogle Scholar
  229. Ireton, K. and Cossart, P. 1997. Host-pathogen interactions during entry and actinbased movement of Listeria monocytogenes. Annu. Rev. Genet. 31, 113-138.PubMedGoogle Scholar
  230. Irwin, S. A., Idupulapati, M., Gilbert, M. E., Harris, J. B., Chakravarti, A. B., Rogers, E. J., Crisostomo, R. A., Larsen, B. P., Mehta, A., Alcantara, C. J., Patel, B., Swain, R. A., Weiler, I. J., Oostra, B. A. and Greenough, W. T. 2002. Dendritic spine and densritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140-146.PubMedGoogle Scholar
  231. Ivanov, A. I., McCall, I. C., Parkos, C. A. and Nusrat, A. 2004. Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol. Biol. Cell 15, 2639-2651.PubMedGoogle Scholar
  232. Jang, D. H., Han, J. H., Lee, S. H., Lee, Y. S., Park, H., Lee, S. H., Kim, H. and Kaang, B. K. 2005. Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc. Natl Acad. Sci. USA 102, 16072-16077.PubMedGoogle Scholar
  233. Jiang, C. J., Weeds, A. J. and Hussey, P. J. 1997. The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J. 12, 1035-1043.PubMedGoogle Scholar
  234. Jockusch, B. M., Veldman, H., Griffiths, G. W., van Oost, B. A. and Jennekens, F. G. 1980. Immunofluorescence microscopy of a myopathy. alpha-Actinin is a major constituent of nemaline rods. Exp. Cell Res. 127, 409-420.PubMedGoogle Scholar
  235. Jontes, J. D. and Smith, S. J. 2000. Filopodia, spines, and the generation of synaptic diversity. Neuron 27, 11-14.PubMedGoogle Scholar
  236. Kaji, N., Ohashi, K., Shuin, M., Niwa, R., Uemura, T. and Mizuno, K. 2003. Cell cycle-associated changes in Slingshot phosphatase activity and roles in cytokinesis in animal cells. J. Biol. Chem. 278, 33450-30455.PubMedGoogle Scholar
  237. Kanamori, T., Suzuki, M and Titani, K. 1998. Complete amino acid sequences and phosphorylation sites, determined by Edman degradation and mass spectrometry, of rat parotid destrin- and cofilin-like proteins. Arch. Oral Biol. 43, 955-967.PubMedGoogle Scholar
  238. Kang, H., Cui, K. and Zhao, K. 2004. BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol. Cell. Biol. 24, 1188-1199.PubMedGoogle Scholar
  239. Kasibhatla, S. and Tseng, B. 2003. Why target apoptosis in cancer treatment? Mol. Cancer Ther. 2, 573-580.PubMedGoogle Scholar
  240. Kawano, N. and Horoupian, D. S. 1981. Intracytoplasmic rod-like inclusions in cau-date nucleus. Neuropathol. Appl. Neurobiol. 7, 307-314.PubMedGoogle Scholar
  241. Keating, M. T. 1997. On the trail of genetic culprits in Williams syndrome.Cardiovasc. Res. 36, 134-137.PubMedGoogle Scholar
  242. Keezer, S. M., Ivie, S. E., Krutzsch, H. C., Tandle, A., Libutti, S. K. and Roberts, D. D. 2003. Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Res. 63, 6405-6412.PubMedGoogle Scholar
  243. Kennedy, M. B. 2000. Signal-processing machines at the postsynaptic density. Science 290,750-754.PubMedGoogle Scholar
  244. Kennedy, M. B., Beale, H. C., Carlisle, H. J. and Washburn, L. R. 2005. Integration of biochemical signalling in spines. Nat. Rev. Neurosci. 6, 423-434.PubMedGoogle Scholar
  245. Khan, N. A., Wang, Y., Kim, K. J., Chung, J. W., Wass, C. A. and Kim, K. S. 2002. Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J. Biol. Chem. 277, 15607-15612.PubMedGoogle Scholar
  246. Kimura, T., Hashimoto, I., Yamamoto, A., Nixhikawa, M. and Fujisawa, J.-I. 2000. Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5, 289-307.PubMedGoogle Scholar
  247. Koch, C. and Zador, A. 1993. The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413-422.PubMedGoogle Scholar
  248. Koenig, E. and Adams, P. 1982. Local protein synthesizing activity in axonal fields regenerating in vitro. J. Neurochem. 39, 386-400.PubMedGoogle Scholar
  249. Komarova, Y. A., Akhmanova, A. S., Kojima, S.-I., Galjart, N. and Borisy, G. G. 2002. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159,589-599.PubMedGoogle Scholar
  250. Kovar, D. R. 2005. Molecular details of formin-mediated actin assembly. Curr. Opin. Cell Biol. 18, 1-7.Google Scholar
  251. Krebs, A., Rothkegel, M., Klar, M. and Jockusch, B. M. 2001. Characterization of functional domains of mDia1, a link between the small GTPase Rho and the actin cytoskeleton. J. Cell Sci. 114, 3663-3672.PubMedGoogle Scholar
  252. Kroczek, R. and Hamelmann, E. 2005. T-cell costimulatory molecules: Optimal targets for the treatment of allergic airway disease with monoclonal antibodies. J. Allergy Clin. Immunol. 116, 906-909.PubMedGoogle Scholar
  253. Kubler, E. and Riezman, H. 1993. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855-2862.PubMedGoogle Scholar
  254. Kulisevsky, J., Marti, M. J., Ferrer, I. and Tolosa, E. 1988. Meige syndrome: Neuropathology of a case. Mov. Disord. 3, 170-175.PubMedGoogle Scholar
  255. Kurz, A. F. 2005. Uncommon neurodegenerative causes of dementia. Int.Psychogeriatr. 17(Suppl. 1), 35-49.Google Scholar
  256. Kusano, K.-I., Abe, H. and Obinata, T. 1999. Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol. Cell. Biochem. 190, 133-141.PubMedGoogle Scholar
  257. Kwak, I. H., Kim, H. S., Choi, O. R., Ryu, S. and Lim, K. 2004. Nuclear accumulation of globular actin as a cellular senescence marker. Cancer. Res. 64, 572-580.PubMedGoogle Scholar
  258. Laas, R. and Hagel, C. 1994. Hirano bodies and chronic alcoholism. Neuropathol. Appl. Neurobiol. 20, 12-21.PubMedGoogle Scholar
  259. Laggerbauer, B., Ostareck, D., Keidel, E. M., Ostareck-Lederer, A. and Fischer, U. 2001. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329-338.PubMedGoogle Scholar
  260. Laing, N. G., Clarke, N. F., Dye, D. E., Liyanage, K., Walker, K. R., Kobayashi, Y., Shimakawa, S., Hagiwara, T., Ouvrier, R., Sparrow, J. C., Nishino, I., North, K. N. and Nonaka, I. 2004. Actin mutations are one cause of congenital fibre type dis-proportion. Ann. Neurol. 56, 689-694.PubMedGoogle Scholar
  261. LaLonde, D. P., Brown, M. C., Bouverat, B. P. and Turner, C. E. 2005. Actopaxin interacts with TESK1 to regulate cell spreading on fibronectin. J. Biol. Chem. 280, 21680-21688.PubMedGoogle Scholar
  262. Langford, G. M. 1995. Actin- and microtubule-dependent organelle motors: Interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82-88.PubMedGoogle Scholar
  263. Lappalainen, P., Fedorov, E. V., Fedorov, A. A., Almo, S. C. and Drubin, D. G. 1997. Essential functions and actin-binding surfaces of yeast cofilin revealed by system-atic mutagenesis. EMBO J. 16, 5520-5530.PubMedGoogle Scholar
  264. Lappalainen, P., Kessels, M. M., Cope, M. J. T. V. and Drubin, D. G. 1998. The ADF homology (ADF-H) domain: A highly exploited actin-binding module. Mol. Biol. Cell 9, 1951-1959.PubMedGoogle Scholar
  265. Larson, L., Arnaudeau, S., Gibson, B., Li, W., Krause, R., Hao, B., Bamburg, J. R., Lew, D. P., Demaurex, N. and Southwick, F. 2005. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails. Proc. Natl Acad. Sci. USA 102, 1921-1926.PubMedGoogle Scholar
  266. Laurent, V., Loisel, T. P., Harbeck, B., Wehman, A., Grobe, L., Jockusch, B. M., Wehland, J., Gertler, F. B. and Carlier, M. F. 1999. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144,1245-1258.PubMedGoogle Scholar
  267. Le Clainche, C. and Drubin, D. G. 2004. Actin lessons from pathogens. Mol. Cell 13, 453-454.PubMedGoogle Scholar
  268. Lee, S. and Helfman, D. M. 2004. Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J. Biol. Chem. 279, 1885-1891.PubMedGoogle Scholar
  269. Lee, S. K and Hollenbeck, P. J. 2003. Organization and translation of mRNA in sym-pathetic axons. J. Cell Sci. 116, 4467-4478.PubMedGoogle Scholar
  270. Lee, K. H., Meuer, S. C. and Samstag, Y. 2000. Cofilin: A missing link between T cell co-stimulation and rearrangement of the actin cytoskeleton. Eur. J. Immunol. 30, 892-899.PubMedGoogle Scholar
  271. Lee-Hoeflich, S. T., Causing, C. G., Podkowa, M., Zhao, X., Wrana, J. L. and Attisano, L. 2004. Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J. 23, 4792-4801.PubMedGoogle Scholar
  272. Lee-Hoeflich, S. T., Zhao, X., Mehra, A. and Attisano, L. 2005. The Drosophila type II receptor, Wishful thinking, binds BMP and myoglianin to activate multiple TGF beta family signaling pathways. FEBS Lett. 579, 4615-4621.PubMedGoogle Scholar
  273. Lees-Miller, J. P., Goodwin, L. O. and Helfman, D. M. 1990. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol. Cell. Biol. 10,1729-1742.PubMedGoogle Scholar
  274. Lehrer, M. S., Sun, T. T. and Lavker, R. M. 1998. Strategies of epithelial repair: Modulation of stem cell and transit amplifying cell proliferation. J. Cell Sci. 111, 2867-2875.PubMedGoogle Scholar
  275. Leonard, S. A., Gittis, A. G., Petrella, E. C., Pollard, T. D. and Lattman, E. E. 1997. Crystal structure of the actin-binding protein actophorin from Acanthamoeba. Nat. Struct. Biol. 4, 369-373.PubMedGoogle Scholar
  276. Lewis, M. H. 2004. Environmental complexity and central nervous system development and function. Ment. Retard. Dev. Disabil. Res. Rev. 10, 91-95.PubMedGoogle Scholar
  277. Li, X., Chen, B., Blystone, S. D., McHugh, K. P., Ross, F. P. and Ramos, D. M. 1998. Differential expression of alphav integrins in K1735 melanoma cells. Invasion Metastasis 18, 1-14.PubMedGoogle Scholar
  278. Li, W. and Gao, F. B. 2003. Actin filament-stabilizing protein tropomyosin regulates the size of dendritic fields. J. Neurosci. 23, 6171-6175.PubMedGoogle Scholar
  279. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/ caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.PubMedGoogle Scholar
  280. Lilic, M., Galkin, V. E., Orlova, A., VanLoock, M. S., Egleman, E. H. and Stebbins, C. E. 2003. Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science 301, 1918-1921.PubMedGoogle Scholar
  281. Lippincott-Schwartz, J., Roberts, T. H. and Hirschberg, K. 2000. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557-589.PubMedGoogle Scholar
  282. Lisman, J. 2003. Actin’s actions in LTP-induced synapse growth. Neuron 38, 361-362.PubMedGoogle Scholar
  283. Loisel, T. P., Boujemaa, R., Pantaloni, D. and Carlier, M.-F. 1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 313-316.Google Scholar
  284. London, M. and Hausser, M. 2005. Dendritic computation. Annu. Rev. Neurosci. 28,503-532.PubMedGoogle Scholar
  285. Lorenz, M., DesMarais, V., Macaluso, F., Singer, R. H. and Condeelis, J. 2004. Measurement of barbed ends, actin polymerization, and motility in live carcinoma cells after growth factor stimulation. Cell Motil. Cytoskeleton 57, 207-217.Google Scholar
  286. Lui, W. Y., Lee, W. M. and Cheng, C. Y. 2003. Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway. Biol. Reprod. 68, 2189-2206.PubMedGoogle Scholar
  287. Lyubimova, A., Bershadsky, A. D. and Ben-Ze’ev, A. 1997. Autoregulation of actin synthesis responds to monomeric actin levels. J. Cell Biochem. 65, 469-478.PubMedGoogle Scholar
  288. Lyubimova, A., Bershadsky, A. D. and Ben-Ze’ev, A. 1999. Autoregulation of actin synthesis requires the 3艂-UTR of actin mRNA and protects cells from actin overproduction. J. Cell Biochem. 76, 1-12.PubMedGoogle Scholar
  289. Mabuchi, I. 1983. An actin-depolymerizing protein (depactin) from starfish oocytes: Properties and interaction with actin. J. Cell Biol. 97, 1612-1621.PubMedGoogle Scholar
  290. Macara, I. G. 2004a. Par proteins: Partners in polarization. Curr. Biol. 14, 160-162.Google Scholar
  291. Macara, I. G. 2004b. Parsing the polarity code. Nat. Rev. Mol. Cell Biol. 5, 220-231.Google Scholar
  292. MacDonald, T. T. and Carter, P. B. 1980. Cell-mediated immunity to intestinal infection. Infect. Immun. 28, 516-523.PubMedGoogle Scholar
  293. Maciver, S. K. and Harrington, C. R. 1995. Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6, 1985-1988.PubMedGoogle Scholar
  294. Maciver, S. K., Pope, B. J., Whytock, S. and Weeds, A. G. 1998. The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. Eur. J. Biochem. 256, 388-397.PubMedGoogle Scholar
  295. Maciver, S. K. and Weeds, A. G. 1994. Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: Consequences for cell locomotion. FEBS Lett. 347,251-256.PubMedGoogle Scholar
  296. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S. 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898.PubMedGoogle Scholar
  297. Maiti, S. and Bamburg, J. R. 2004. Actin capping and severing proteins. In Encyclopedia of Biological Chemistry, vol. 1. W. J. Lennarz and M. D. Lane (Editors). Elsevier, Amsterdam. pp. 19-26.Google Scholar
  298. Maiti, S., Boyle, J. A., Minamide, L. S., Gungabissoon, R. A. and Bamburg, J. R. 2002. Isolation and characterization of ADF/cofilin-actin rods from cultured cells. Mol. Biol. Cell 13, 37.Google Scholar
  299. Majewska, A., Brown, E., Ross, J. and Yuste, R. 2000. Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20, 1722-1734.PubMedGoogle Scholar
  300. Majewska, A., Tashiro, A. and Yuste, R. 2000. Regulation of spine calcium dynamics by rapid spine motility. J. Neurosci. 20, 8262-8268.PubMedGoogle Scholar
  301. Maloney, M. T., Minamide, L. S., Kinley, A. W., Boyle, J. A. and Bamburg, J. R. 2005. Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: A feedforward mechanism for Alzheimer’s disease. J. Neurosci. 25, 11313-11321.PubMedGoogle Scholar
  302. Mann, G. 1894. Histochemical changes induced in sympathetic, motor, and sensory nerve cells by functional activity. J. Anat. Physiol. London 19, 100-108.Google Scholar
  303. Mansouri, A. 1998. The role of Pax3 and Pax7 in development and cancer. Crit. Rev. Oncog. 9, 141-149.PubMedGoogle Scholar
  304. Marin-Padilla, M. 1972. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Res. 44, 625-629.PubMedGoogle Scholar
  305. Maselli, A. G., Davis, R., Thomson, S. A. M., Davis, R. C. and Fechheimer, M. 2002. Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein. J. Cell Sci. 115, 1939-1949.PubMedGoogle Scholar
  306. Masuda, M., Betancourt, L., Matsuzawa, T., Kashimoto, T., Takao, T., Shimonishi, Y. and Horiguchi, Y. 2000. Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J. 19, 521-530.PubMedGoogle Scholar
  307. Matsudaira, P. 1991. Modular organization of actin crosslinking proteins. Trends Biochem. Sci. 16, 87-92.PubMedGoogle Scholar
  308. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. and Kasai, H. 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761-766.PubMedGoogle Scholar
  309. Matsuzaki, F., Matsumoto, S., Yahara, I., Yonezawa, N., Nishida, E and Sakai, H. 1988. Cloning and characterization of porcine brain cofilin cDNA. Cofilin contains the nuclear transport signal sequence. J. Biol. Chem. 263, 11564-11568.PubMedGoogle Scholar
  310. Mattila, P. K., Quintero-Monzon, O., Kugler, J., Moseley, J. B., Almo, S. C., Lappalainen, P. and Goode, B. L. 2004. A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein. Mol. Biol. Cell 15, 5158-5171.PubMedGoogle Scholar
  311. Mattson, M. P. 2004. Pathways towards and away from Alzheimer’s disease. Nature 430,631-639.PubMedGoogle Scholar
  312. Matus, A. 1999. Postsynaptic actin and neuronal plasticity. Curr. Opin. Neurobiol. 9,561-565.PubMedGoogle Scholar
  313. Matus, A. 2000. Actin-based plasticity in dendritic spines. Science 290, 754-758.PubMedGoogle Scholar
  314. Mayer, T., Meyer, M., Janning, A., Schiedel, A. C. and Barnekow, A. 1999. A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts. Oncogene 18, 2117-2128.PubMedGoogle Scholar
  315. McGhie, E. J., Hayward, R. D. and Koronakis, V. 2004. Control of actin turnover by a salmonella invasion protein. Mol. Cell 13, 497-510.PubMedGoogle Scholar
  316. McGough, A. 1998. F-actin-binding proteins. Curr. Opin. Struct. Biol. 8, 166-176.PubMedGoogle Scholar
  317. McGough, A., Pope, B., Chiu, W. and Weeds, A. 1997. Cofilin changes the twist of F-actin: Implications for actin filament dynamics and cellular function. J. Cell Biol. 138,771-781.PubMedGoogle Scholar
  318. McKim, K. S., Matheson, C., Marra, M. A., Wakarchuk, M. F. and Baillie, D. L. 1994. The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Mol. Gen. Genet. 242, 346-357.PubMedGoogle Scholar
  319. McKinney, B. C., Grossman, A. W., Elisseou, N. M. and Greenough, W. T. 2005. Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 knockout mice. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 136, 98-102.Google Scholar
  320. Meberg, P. J. and Bamburg, J. R. 2000. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J. Neurosci. 20, 2459-2469.PubMedGoogle Scholar
  321. Meberg, P. J., Ono, S., Minamide, L. S., Takahashi, M. and Bamburg, J. R. 1998. Actin depolymerizing factor and cofilin phosphorylation dynamics: Response to signals that regulate neurite extension. Cell Motil. Cytoskeleton 39, 172-190.PubMedGoogle Scholar
  322. Meng, Y., Takahashi, H., Meng, J., Zhang, Y., Lu, G., Asrar, S., Nakamura, T. and Jia, Z. 2004. Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase. Neuropharmacology 47, 746-754.PubMedGoogle Scholar
  323. Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W.-Y., MacDonald, J. F., Wang, J. Y., Falls, D. L. and Jia, Z. 2002. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121-133.PubMedGoogle Scholar
  324. Meyer, G. and Feldman, E. L. 2002. Signaling mechanisms that regulate actin-based motility processes in the nervous system. Neurochemistry 83, 490-503.Google Scholar
  325. Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., Marenco, S., Morris, C. A., Das, S., Kippenhan, S., Mattay, V. S., Weinberger, D. R. and Berman, K. F. 2005. Functional, structural and metabolic abnormalities of the hippocampal formation in Williams syndrome. J. Clin. Invest. 115, 1888-1895.PubMedGoogle Scholar
  326. Minamide, L. S., Painter, W. B., Schevzov, G., Gunning, P. and Bamburg, J. R. 1997. Differential regulation of actin depolymerizing factor and cofilin in response to alterations in the actin monomer pool. J. Biol. Chem. 272, 8303-8309.PubMedGoogle Scholar
  327. Minamide, L. S., Striegl, A. M., Boyle, J. A., Meberg, P. J. and Bamburg, J. R. 2000. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat. Cell Biol. 2, 628-636.PubMedGoogle Scholar
  328. Misra, U. K., Sharma, T. and Pizzo, S. V. 2005. Ligation of cell surface-associated glucose-regulated protein 78 by receptor-recognized forms of alpha 2-macroglobulin: Activation of p21-activated protein kinase-2-dependent signaling in murine peritoneal macrophages. J. Immunol. 175, 2525-2533.PubMedGoogle Scholar
  329. Mitake, S., Ojika, K. and Hirano, A. 1997. Hirano bodies and Alzheimer’s disease. Kaohsiung J. Med. Sci. 13, 10-18.PubMedGoogle Scholar
  330. Mitchell, T. G. and Perfect, J. R. 1995. Cryptococcosis in the era of AIDS-100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8, 515-548.PubMedGoogle Scholar
  331. Moeller, M. L., Shi, Y., Reichardt, L. F. and Ethell, I. M. 2005. EphB receptors regulate dendritic spine morphogenesis through the recruitment/phosphorylation of FAK and RhoA activation. J. Biol. Chem. 281, 1587-1598.PubMedGoogle Scholar
  332. Mohri, K. and Ono, S. 2003. Actin filament disassembling activity of Caenorhabditis elegans actin-interacting protein 1 (UNC-78) is dependent on filament binding by a specific ADF/cofilin isoform. J. Cell Sci. 116, 4107-4108.PubMedGoogle Scholar
  333. Moon, A. L., Janmey, P. A., Louie, K. A. and Drubin, D. G. 1993. Cofilin is an essential component of the yeast cortical cytoskeleton. J. Cell Biol. 120, 421-435.PubMedGoogle Scholar
  334. Morgan, T. E., Lockerbie, R. O., Minamide, L. S., Browning, M. D. and Bamburg, J. R. 1993. Isolation and characterization of a regulated form of actin depolymerizing factor. J. Cell Biol. 122, 623-633.PubMedGoogle Scholar
  335. Morishita, W., Marie, H. and Malenka, R. C. 2005. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat. Neurosci. 8, 1043-1050.PubMedGoogle Scholar
  336. Moriyama, K., Iida, K. and Yahara, I. 1996. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73-86.PubMedGoogle Scholar
  337. Moriyama, K., Nishida, E., Yonezawa, N., Sakai, H., Matsumoto, S., Iida, K. and Yahara, I. 1990. Destrin, a mammalian actin-depolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA. J. Biol. Chem. 265, 5768-5773.PubMedGoogle Scholar
  338. Moriyama, K. and Yahara, I. 2002. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J. Cell Sci. 115, 1591-1601.PubMedGoogle Scholar
  339. Moriyama, K., Yonezawa, N., Sakai, H., Yahara, I. and Nishida, E. 1992. Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J. Biol. Chem. 267, 7240-7244.PubMedGoogle Scholar
  340. Mouneimne, G., Soon, L., DesMarais, V., Sidani, M., Song, X., Yip, S. C., Ghosh, M., Eddy, R., Backer, J. M. and Condeelis, J. 2004. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697-708.PubMedGoogle Scholar
  341. Murrell, J., Farlow, M., Ghetti, B. and Benson, M. D. 1991. A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254, 97-99.PubMedGoogle Scholar
  342. Nachmias, V. T. and Huxley, H. E. 1970. Electron microscope observations of actomyosin and actin preparations from Physarum polycephalum, and on their interaction with heavy meromyosin subfragment I from muscle myosin. J. Mol. Biol. 50, 83-90.PubMedGoogle Scholar
  343. Nagaoka, R., Abe, H. and Obinata, T. 1996. Site-directed mutagenesis of the phosphorylation site of cofilin: Its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil. Cytoskeleton 35, 200-209.PubMedGoogle Scholar
  344. Nagata-Ohashi, K., Ohta, Y., Goto, K., Chiba, S., Mori, R., Nishita, M., Ohashi, K., Kousaka, K., Iwamatsu, A., Niwa, R., Uemura, T. and Mizuno, K. 2004. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465-471.PubMedGoogle Scholar
  345. Nakashima, K., Sato, N., Nakagaki, T., Abe, H., Ono, S. and Obinata, T. 2005. Two mouse cofilin isoforms, muscle-type (MCF) and non-muscle type (NMCF), interact with F-actin with different efficiencies. J. Biochem. 138, 519-526.PubMedGoogle Scholar
  346. Nakayama, A. Y. and Luo, L. 2000. Intracellular signaling pathways that regulate dendritic spine morphogenesis. Hippocampus 10, 582-586.PubMedGoogle Scholar
  347. Nebl, G., Meuer, S. C. and Samstag, Y. 1996. Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J. Biol. Chem. 271, 26276-26280.PubMedGoogle Scholar
  348. Negishi, M. and Katoh, H. 2005. Rho family GTPases and dendrite plasticity. Neuroscientist 11, 187-191.PubMedGoogle Scholar
  349. Newey, S. E., Velamoor, V., Govek, E. E. and Van Aelst, L. 2005. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol. 64, 58-74.PubMedGoogle Scholar
  350. Ng, J. and Luo, L. 2004. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44, 779-793.PubMedGoogle Scholar
  351. Nichols, C. B., Fraser, J. A. and Heitman, J. 2004. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol. Biol. Cell 15, 4476-4489.PubMedGoogle Scholar
  352. Nimchinsky, E. A., Sabatini, B. L. and Svoboda, K. 2002. Structure and function ofdendritic spines. Annu. Rev. Physiol. 64, 313-353.PubMedGoogle Scholar
  353. Nishida, E. 1985. Opposite effects of cofilin and profilin from porcine brain on rateof exchange of actin-bound adenosine 5艂-triphosphate. Biochemistry 24, 1160-1164.PubMedGoogle Scholar
  354. Nishida, E., Iida, K., Yonezawa, N., Koyasu, S., Yahara, I. and Sakai, H. 1987. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc. Natl Acad. Sci. USA 84, 5262-5266.PubMedGoogle Scholar
  355. Nishida, E., Maekawa, S. and Sakai, H. 1984a. Characterization of the action of porcine brain profilin on actin polymerization. J. Biochem. 95, 399-404.Google Scholar
  356. Nishida, E., Maekawa, S. and Sakai, H. 1984b. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23, 5307-5313.Google Scholar
  357. Nishida, E., Muneyuki, E., Maekawa, S., Ohta, Y. and Sakai, H. 1985. An actindepolymerizing protein (destrin) from porcine kidney. Its action on F-actin containing or lacking tropomyosin. Biochemistry 24, 6624-6630.PubMedGoogle Scholar
  358. Nishimura, Y., Yoshioka, K., Bernard, O., Himeno, M. and Itoh, K. 2004. LIM kinase 1: Evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells. Eur. J. Cell Biol. 83, 369-380.PubMedGoogle Scholar
  359. Nishita, M., Tomizawa, C., Yamamoto, M., Horita, Y., Ohashi, K. and Mizuno, K. 2005. Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J. Cell Biol. 171, 349-359.PubMedGoogle Scholar
  360. Nishiya, N., Kiosses, W. B., Han, J. and Ginsberg, M. H. 2005. An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat. Cell Biol. 7, 343-352.PubMedGoogle Scholar
  361. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. and Uemura, T. 2002. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233-246.PubMedGoogle Scholar
  362. Nowak, K. J., Wattanasirichaigoon, D., Goebel, H. H., Wilce, M., Pelin, K., Donner, K., Jacob, R. L., Hubner, C., Oexle, K., Anderson, J. R., Verity, C. M., North, K. N., Iannaccone, S. T., Muller, C. R., Nurnberg, P., Muntoni, F., Sewry, C., Hughes, I., Sutphen, R., Lacson, A. G., Swoboda, K. J., Vigneron, J., Wallgren-Pettersson, C., Beggs, A. H. and Laing, N. G. 1999. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208-212.PubMedGoogle Scholar
  363. Nunoue, K., Ohashi, K., Okano, I. and Mizuno, K. 1995. LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene 11, 701-710.PubMedGoogle Scholar
  364. Obinata, T., Nagaoka-Yasuda, R., Ono, S., Kusano, K., Mohri, K., Ohtaka, Y., Yamashiro, S., Okada, K. and Abe, H. 1997. Low molecular-weight G-actin binding proteins involved in the regulation of actin assembly during myofibrillogenesis. Cell Struct. Funct. 22, 181-189.PubMedGoogle Scholar
  365. Oh, S. H., Adler, H. J., Raphael, Y. and Lomax, M. I. 2002. WDR1 colocalizes with ADF and actin in the normal and noise-damaged chick cochlea. J. Comp. Neurol. 448,399-409.PubMedGoogle Scholar
  366. Ohashi, K., Nagata, K., Maekawa, M., Ishizaki, T., Narumiya, S. and Mizuno, K. 2000. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J. Biol. Chem. 275, 3577-3582.PubMedGoogle Scholar
  367. Ohta, Y., Kousaka, K., Nagata-Ohashi, K., Ohashi, K., Murramoto, A., Shima, Y., Niwa, R., Uemura, T. and Mizuno, K. 2003. Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 8, 811-824.PubMedGoogle Scholar
  368. Ohta, Y., Nishida, E., Sakai, H. and Miyamoto, E. 1989. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J. Biol. Chem. 264, 16143-16148.PubMedGoogle Scholar
  369. Okada, K., Blanchoin, L., Abe, H., Chen, H., Pollard, T. D. and Bamburg, J. R. 2002. Xenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. J. Biol. Chem. 277, 43011-43016.PubMedGoogle Scholar
  370. Okamoto, K., Nagai, T., Miyawaki, A. and Hayashi, Y. 2004. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104-1112.PubMedGoogle Scholar
  371. Olave, I., Wang, W., Xue, Y., Kou, A. and Crabtree, G. R. 2002. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509-2517.PubMedGoogle Scholar
  372. Ono, S., Abe, H., Nagaoka, R. and Obinata, T. 1993. Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J. Muscle Res. Cell Motil. 14,195-204.PubMedGoogle Scholar
  373. Ono, S., Baillie, D. L. and Benian, G. M. 1999. UNC-60B, an ADF/cofilin family protein, is required for proper assembly of actin into myofibrils in Caenorhabditis elegans body wall muscle. J. Cell Biol. 145, 491-502.PubMedGoogle Scholar
  374. Ono, S. and Benian, G. M. 1998. Two Caenorhabditis elegans actin depolymerizing factor/cofilin proteins, encoded by the unc-60 gene, differentially regulate actin filament dynamics. J. Biol. Chem. 273, 3778-3783.PubMedGoogle Scholar
  375. Ono, S., Inoue, K., Mannen, T., Kanda, F., Jinnai, K. K. and Takahashi, K. 1987. Neuropathological changes of the brain in myotonic dystrophy-some new observations. J. Neurol. Sci. 81, 301-320.PubMedGoogle Scholar
  376. Ono, S., McGough, A., Pope, B. J., Tolbert, V. T., Bui, A., Pohl, J., Benian, G. M., Gernert, K. M. and Weeds, A. G. 1991. The C-terminal tail of UNC-60B (actin depolymerizing factor/cofilin) is critical for maintaining its stable association with F-actin and is implicated in the second actin-binding site. J. Biol. Chem. 276, 5952-5958.Google Scholar
  377. Ono, S., Minami, N., Abe, H. and Obinata, T. 1994. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J. Biol. Chem. 269, 15280-15286.PubMedGoogle Scholar
  378. Ono, S., Mohri, K. and Ono, K. 2004. Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/Cofilin-bound actin filaments. J. Biol. Chem. 279, 14207-14212.PubMedGoogle Scholar
  379. Ono, S. and Ono, K. 2002. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J. Cell Biol. 156, 1065-1076.PubMedGoogle Scholar
  380. Ono, K., Parast, M., Alberico, C., Benian, G. M. and Shoichiro, O. 2003. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J. Cell Sci. 116, 2073-2085.PubMedGoogle Scholar
  381. Orlova, A., Shvetsov, A., Galkin, V. E., Kudryashov, D. S., Rubenstein, P. A., Egelman, E. H. and Reisler, E. 2004. Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization. Proc. Natl Acad. Sci. USA 101, 17664-17668.PubMedGoogle Scholar
  382. Osborne, L. R., Martindale, D., Scherer, S. W., Shi, X.-M., Huizenga, J., Heng, H. H. Q., Costa, T., Pober, B., Lew, L., Brinkman, J., Rommens, J., Koop, B. and Tsui, L.-C. 1996. Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients. Genomics 36, 328-336.PubMedGoogle Scholar
  383. Otsuki, Y., Tanaka, M., Yoshii, S., Kawazoe, N., Nakaya, K. and Sugimura, H. 2001. Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc. Natl Acad. Sci. USA 98, 4385-4390.PubMedGoogle Scholar
  384. Palazzo, A. F., Cook, T. A., Alberts, A. S. and Gundersen, G. G. 2001. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3, 723-729.PubMedGoogle Scholar
  385. Palmgren, S., Vartainen, M. and Lappalainen, P. 2002. Twinfilin, a molecular mailman for actin monomers. J. Cell Sci. 115, 881-886.PubMedGoogle Scholar
  386. Pandey, D., Goyal, P., Bamburg, J. R. and Siess, W. 2006. Regulation of LIM-kinase 1 and cofilin in thrombin-stimulated platelets. Blood 107, 575-583.PubMedGoogle Scholar
  387. Pantaloni, D. and Carlier, M. F. 1993. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75, 1007-1014.PubMedGoogle Scholar
  388. Park, E., Na, M., Choi, J., Kim, S., Lee, J. R., Yoon, J., Park, D., Sheng, M. and Kim, E. 2003. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. 278, 19220-19229.PubMedGoogle Scholar
  389. Pawlak, G. and Helfman, D. M. 2001. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 11, 41-47.PubMedGoogle Scholar
  390. Pawlak, G. and Helfman, D. M. 2002a. Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol. Biol. Cell 13, 336-347.Google Scholar
  391. Pawlak, G. and Helfman, D. M. 2002b. MEK mediates v-Src-induced disruption of the actin cytoskeleton via inactivation of the Rho-ROCK-LIM kinase pathway. J. Biol. Chem. 277, 26927-26933.Google Scholar
  392. Pena, C. E. and Katoh, A. 1989. Intracytoplasmic eosinophilic inclusions in the neurons of the central nervous system. Acta Neuropathol. 79, 73-77.PubMedGoogle Scholar
  393. Pendleton, A., Pope, B., Weeds, A and Koffer, A. 2003. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394-14340.PubMedGoogle Scholar
  394. Penzes, P., Beeser, A., Chernoff, J., Schiller, M. R., Eipper, B. A., Mains, R. E. and Huganir, R. L. 2003. Rapid induction of dendritic spine morphogenesis by transsynaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263-274.PubMedGoogle Scholar
  395. Peoples, R., Perez-Jurado, L., Wang, Y. K., Kaplan, P. and Francke, U. 1996. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion. Am. J. Hum. Genet. 58, 1370-1373.PubMedGoogle Scholar
  396. Percival, J. M., Hughes, J. A., Brown, D. L., Schevzov, G., Heimann, K., Vrhovski, B., Bryce, N., Stow, J. L. and Gunning, P. W. 2004. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol. Biol. Cell 15, 268-280.PubMedGoogle Scholar
  397. Peter-Ross, E. 2006. A new hypothesis with models for the genes and etiopathobiologies of mood disorders and schizophrenias. Mol. Psychiatry (in press).Google Scholar
  398. Peters, A. and Kaiserman-Abramof, I. R. 1970. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321-355.PubMedGoogle Scholar
  399. Peterson, C., Kress, Y., Valle, R. and Goldman, J. E. 1988. High molecular weight microtubule-associated proteins bind to actin lattices (Hirano bodies). Acta Neuropathol. 77, 168-174.PubMedGoogle Scholar
  400. Philimonenko, V. V., Zhao, J., Iben, S., Dingova, H., Kysela, K., Kahle, M., Zentgraf, H., Hofmann, W. A., de Lanerolle, P., Hozak, P. and Grummt, I. 2004. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165-1172.PubMedGoogle Scholar
  401. Pollard, T. D., Blanchoin, L. and Mullins, R. D. 2000. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545-576.PubMedGoogle Scholar
  402. Pollard, T. D. and Borisy, G. G. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.PubMedGoogle Scholar
  403. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. and Danuser, G. 2004. Two distinct actin networks drive the protrusion of migrating cells. Science 305,1782-1786.PubMedGoogle Scholar
  404. Pope, B. J., Zierler-Gould, K. M., Kühne, R., Weeds, A. G. and Ball, L. J. 2004. Solution structure of human cofilin: Actin binding, pH sensitivity, and relationship to actin-depolymerizing factor. J. Biol. Chem. 279, 4840-4848.PubMedGoogle Scholar
  405. Preus, M. 1984. The Williams syndrome: Objective definition and diagnosis. Clin. Genet. 25, 422-428.PubMedGoogle Scholar
  406. Price, D. L., Sisodia, S. S. and Gandy, S. E. 1995. Amyloid beta amyloidosis in Alzheimer’s disease. Curr. Opin. Neurol. 8, 268-274.PubMedGoogle Scholar
  407. Pritchard, C. A., Hayes, L., Wojnowski, L., Zimmer, A., Marais, R. M. and Norman, J. C. 2004. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol. Cell. Biol. 24, 5937-5952.PubMedGoogle Scholar
  408. Prochniewicz, E., Janson, N., Thomas, D. D. and De la Cruz, E. M. 2005. Cofilin increases the torsional flexibility and dynamics of actin filaments. J. Mol. Biol. 353, 990-1000.PubMedGoogle Scholar
  409. Purpura, D. P. 1974. Dendritic spine “dysgenesis” and mental retardation. Science 186,1126-1128.PubMedGoogle Scholar
  410. Ramakers, G. J. 2002. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 25, 191-199.PubMedGoogle Scholar
  411. Rando, O. J., Zhao, K. and Crabtree, G. R. 2000. Searching for a function for nuclear actin. Trends Cell Biol. 10, 92-97.PubMedGoogle Scholar
  412. Rando, O. J., Zhao, K., Janmey, P. and Crabtree, G. R. 2002. Phosphatidylinositoldependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl Acad. Sci. USA 99, 2824-2829.PubMedGoogle Scholar
  413. Raval, G. N., Bharadwaj, S., Levine, E. A., Willingham, M. C., Geary, R. L., Kute, T. and Prasad, G. L. 2003. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 22, 6194-6203.PubMedGoogle Scholar
  414. Raymond, K., Bergeret, E., Avet-Rochex, A., Griffin-Shea, R. and Fauvarque, M. O. 2004. A screen for modifiers of RacGAP(84C) gain-of-function in the Drosophila eye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis. J. Cell Sci. 117, 2777-2789.PubMedGoogle Scholar
  415. Ressad, F., Didry, D., Xia, G.-X., Hong, Y., Chua, N.-H., Pantaloni, D. and Carlier, M.-F. 1998. Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect of phosphorylation. J. Biol. Chem. 273, 20894-20902.PubMedGoogle Scholar
  416. Reuner, K. H., Dunker, P., van der Does, A., Wiederhold, M., Just, I., Aktories, K. and Katz, N. 1996. Regulation of actin synthesis in rat hepatocytes by cytoskeletal rearrangements. Eur. J. Cell Biol. 69, 189-196.PubMedGoogle Scholar
  417. Roberts, A. B. 1998. Molecular and cell biology of TGF-beta. Miner. Electrolyte Metab. 24, 111-119.PubMedGoogle Scholar
  418. Rodal, A. A., Tetreault, J. W., Lappalainen, P., Drubin, D. G. and Amberg, D. C. 1999. Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol. 145, 1251-1264.PubMedGoogle Scholar
  419. Rogers, S. L., Wiedemann, U., Stuurman, N. and Vale, R. D. 2003. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079-1088.PubMedGoogle Scholar
  420. Romero, S., Le Clainche, C., Didry, D., Egile, C., Pantaloni, D. and Carlier, M. F. 2004. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419-429.PubMedGoogle Scholar
  421. Roovers, K. and Assoian, R. K. 2003. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol. Cell. Biol. 23, 4283-4294.PubMedGoogle Scholar
  422. Roovers, K., Klein, E. A., Castagnino, P. and Assoian, R. K. 2003. Nuclear translocation of LIM kinase mediates Rho-Rho kinase regulation of cyclin D1 expression. Dev. Cell 5, 273-284.PubMedGoogle Scholar
  423. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. and Mitchison, T. 1997. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323-1332.PubMedGoogle Scholar
  424. Rosenblatt, J., Peluso, P. and Mitchison, T. J. 1995. The bulk of unpolymerized actin in Xenopus egg extracts is ATP-bound. Mol. Biol. Cell 6, 227-236.PubMedGoogle Scholar
  425. Rosso, S., Peretti, D., Bollati, F., Sumi, T., Nakamura, T., Quioraga, S., Ferreira, A. and Cáceres, A. 2004. LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol. Biol. Cell 15, 3433-3449.PubMedGoogle Scholar
  426. Rossoll, W., Jablonka, S., Andreassi, C., Kröning, A.-K., Karle, K., Monani, U. R. and Sendtner, M. 2003. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801-812.PubMedGoogle Scholar
  427. Samstag, Y., Eckerskorn, C., Wesselborg, S., Genning, S., Wallich, R. and Meuer, S. C. 1994. Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin. Proc. Natl Acad. Sci. USA 91, 4494-4498.PubMedGoogle Scholar
  428. Samstag, Y. and Nebl, G. 2003. Interaction of cofilin with the serine phosphatases PP1 and PP2A in normal and neoplastic human T lymphocytes. Adv. Enzyme Regul. 43, 197-211.PubMedGoogle Scholar
  429. Sanger, J. W., Sanger, J. M., Dreis, T. E. and Jockusch, B. M. 1980. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc. Natl Acad. Sci. USA 77, 5268-5272.PubMedGoogle Scholar
  430. Sarmiere, P. D. and Bamburg, J. R. 2004. Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J. Neurobiol. 58, 103-117.PubMedGoogle Scholar
  431. Schevzov, G., Bryce, N. S., Almonte-Baldonado, R., Joya, J., Lin, J. J., Hardeman, E., Weinberger, R. and Gunning, P. 2005. Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol. Biol. Cell 16, 3425-3437.PubMedGoogle Scholar
  432. Schlech, W. F. III, Lavigne, P. M., Bortolussi, R. A., Allen, A. C., Haldane, E. V., Wort, A. J., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S. and Broome, C. V. 1983. Epidemic listeriosis-evidence for transmission by food. N. Engl. J. Med. 308, 203-206.PubMedCrossRefGoogle Scholar
  433. Schmidt, M. L., Lee, V. M. and Trojanowski, J. Q. 1989. Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab. Invest. 60, 513-522.PubMedGoogle Scholar
  434. Schochet, S. S. Jr., Lampert, P. W. and Linderberg, R. 1968. Fine structure of the Pick and Hirano bodies in a case of Pick’s disease. Acta Neuropathol. 11, 330-337.PubMedGoogle Scholar
  435. Schochet, S. S. Jr. and McCormick, W. F. 1972. Ultrastructure of Hirano bodies. Acta Neuropathol. 21, 50-60.PubMedGoogle Scholar
  436. Schubert, F. R., Tremblay, P., Mansouri, A., Faisst, A. M., Kammandel, B., Lumsden, A., Gruss, P. and Dietrich, S. 2001. Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev. Dyn. 222, 506-521.PubMedGoogle Scholar
  437. Schuyler, S. C. and Pellman, D. 2001. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell 105, 421-424.PubMedGoogle Scholar
  438. Schwartz, N., Hosford, M., Sandoval, R. M., Wagner, M. C., Atkinson, S. J., Bamburg, J. and Molitoris, B. A. 1999. Ischemia activates actin depolymerizing factor: Role in proximal tubule microvillar actin alterations. Am. J. Physiol. 276, 544-551.Google Scholar
  439. Sechi, A. S. and Wehland, J. 2004. ENA/VASP proteins: Multifunctional regulators of actin cytoskeleton dynamics. Front. Biosci. 9, 1294-1310.PubMedGoogle Scholar
  440. Segev, I. and London, M. 2000. Untangling dendrites with quantitative models. Science 290, 744-750.PubMedGoogle Scholar
  441. Sells, M. A., Boyd, J. T. and Chernoff, J. 1999. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837-849.PubMedGoogle Scholar
  442. Serpinskaya, A. S., Denisenko, O. N., Gelfand, V. I. and Bershadsky, A. D. 1990. Stimulation of actin synthesis in phalloidin-treated cells. Evidence for autoregulatory control. FEBS Lett. 277, 11-14.PubMedGoogle Scholar
  443. Setoguti, T., Esumi, H., Shimizu, T. 1974. Specific organization of intracytoplasmic filaments in the dog testicular interstitial cell. Cell Tissue Res. 148, 493-497.PubMedGoogle Scholar
  444. Shen, X., Ranallo, R., Choi, E. and Wu, C. 2003. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147-155.PubMedGoogle Scholar
  445. Shestakova, E. A., Singer, R. H. and Condeelis, J. 2001. The physiological significance of beta -actin mRNA localization in determining cell polarity and directional motility. Proc. Natl Acad. Sci. USA 98, 7045-7050.PubMedGoogle Scholar
  446. Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K. and Malinow, R. 1999. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811-1816.PubMedGoogle Scholar
  447. Shi, S. H., Jan, L. Y. and Jan, Y. N. 2003. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63-75.PubMedGoogle Scholar
  448. Shi, Y. and Massague, J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700.PubMedGoogle Scholar
  449. Shin, D. H., Lee, E., Chung, Y. H., Mun, G. G., Park, J., Lomax, M. I. and Oh, S. H. H. 2004. Subcellular localization of WD40 repeat 1 protein in PC12 rat pheochromocytoma cells. Neuorsci. Lett. 367, 399-403.Google Scholar
  450. Shirao, T., Kojima, N. and Obata, K. 1992. Cloning of drebrin A and induction of neurite-like processes in drebrin-transfected cells. Neuroreport 3, 109-112.PubMedCrossRefGoogle Scholar
  451. Shuler, H., Mueller, A. K. and Matuschewski, K. 2005. A Plasmodium actindepolymerizing factor that binds exclusively to actin monomers. Mol. Biol. Cell 16,4013-4023.Google Scholar
  452. Silverman-Gavrila, R. V. and Forer, A. 2000. Evidence that actin and myosin are involved in the poleward flux of tubulin in metaphase kinetochore microtubules of crane-fly spermatocytes. J. Cell Sci. 113, 597-609.PubMedGoogle Scholar
  453. Sima, A. A. and Hinton, D. 1983. Hirano-bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neurol. Scand. 68, 107-112.PubMedGoogle Scholar
  454. Sisodia, S. S. and Price, D. L. 1995. Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J. 9, 366-370.PubMedGoogle Scholar
  455. Smith, R. S., Hawes, N. L., Kuhlmann, S. D., Heckenlively, J. R., Chang, B., Roderick, T. H. and Sundberg, J. P. 1996. Corn1: A mouse model for corneal surface disease and neovascularization. Invest. Ophthalmol. Vis. Sci. 37, 397-404.PubMedGoogle Scholar
  456. Somma, M. P., Fasulo, B., Cenci, G., Cundari, E. and Gatti, M. 2002. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell 13, 2448-2460.PubMedGoogle Scholar
  457. Somogyi, P., Freund, T. F., Wu, J. Y. and Smith, A. D. 1983a. The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat. Neuroscience 9, 475-490.Google Scholar
  458. Somogyi, P., Kisvarday, Z. F., Martin, K. A. and Whitteridge, D. 1983b. Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10, 261-294.Google Scholar
  459. Song, H. and Poo, M. 2001. The cell biology of neuronal navigation. Nat. Cell Biol. 3,81-88.Google Scholar
  460. Soosairajah, J., Maiti, S., Wiggan, O., Sarmiere, P., Moussi, N., Sarcevic, B., Sampath, R., Bamburg, J. R. and Bernard, O. 2005. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 24, 473-486.PubMedGoogle Scholar
  461. Spacek, J. and Harris, K. M. 1997. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190-203.PubMedGoogle Scholar
  462. Steeg, P. S., Bevilacqua, G., Pozzatti, R., Liotta, L. A. and Sobel, M. E. 1988. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48, 6550-6554.PubMedGoogle Scholar
  463. Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E., Mount, S. L., Raman, R., Davies, P., Masliah, E., Williams, D. S. and Goldstein, L. S. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282-1288.PubMedGoogle Scholar
  464. Strzelecka-Golaszewska, H. and Drabikowski, W. 1968. Studies on the exchange of G-actin-bound calcium with bivalent cations. Biochim. Biophys. Acta 162, 581-595.PubMedGoogle Scholar
  465. Subramaniam, V., Vincent, I. R. and Jothy, S. 2005. Upregulation and dephosphorylation of cofilin: Modulation by CD44 variant isoform in human colon cancer cells. Exp. Mol. Pathol. 79, 187-193.PubMedGoogle Scholar
  466. Sukezane, T., Oneyama, C., Kakumoto, K., Shibutani, K., Hanafusa, H. and Akagi, T. 2005a. Human diploid fibroblasts are resistant to MEK/ERK-mediated disruption of the actin cytoskeleton and invasiveness stimulated by Ras. Oncogene 24, 8216.Google Scholar
  467. Sukezane, T., Oneyama, C., Kakumoto, K., Shibutani, K., Hanafusa, H. and Akagi, T. 2005b. Human diploid fibroblasts are resistant to MEK/ERK-mediated disruption of the actin cytoskeleton and invasiveness stimulated by Ras. Oncogene 24, 5648-5655.Google Scholar
  468. Sumi, T., Matsumoto, K. and Nakamura, T. 2001. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 276(1), 670-676.PubMedGoogle Scholar
  469. Sumi, T., Matsumoto, K. and Nakamura, T. 2002. Mitosis-dependent phosphorylation and activation of LIM-kinase 1. Biochem. Biophys. Res. Commun. 290, 1315-1320.PubMedGoogle Scholar
  470. Sumi, T., Matsumoto, K., Shibuya, A. and Nakamura, T. 2001. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J. Biol. Chem. 276, 23092-23096.PubMedGoogle Scholar
  471. Sun, H. Q., Kwiatkowska, K. and Yin, H. L. 1995. Actin monomer binding proteins. Curr. Opin. Cell Biol. 7, 202-210.Google Scholar
  472. Suter, D. M. and Forscher, P. 2000. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97-113.PubMedGoogle Scholar
  473. Sutoh, K. and Mabuchi, I. 1989. End-label fingerprintings show that an N-terminal segment of depactin participates in interaction with actin. Biochemistry 28, 102-106.PubMedGoogle Scholar
  474. Suurna, M. V., Ashworth, S. L., Hosford, M., Sandoval, R. M., Wean, S. E., Shah, B. M., Bamburg, J. R. and Molitoris, B. A. 2006. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am. J. Physiol. Renal Physiol. 290, 1398-1407.Google Scholar
  475. Suyama, E., Wadhwa, R., Kawasaki, H., Yaguchi, T., Kaul, S. C., Nakajima, M. and Taira, K. 2004. LIM kinase-2 targeting as a possible anti-metastasis therapy. J. Gene Med. 6, 357-363.PubMedGoogle Scholar
  476. Svitkina, T. M. and Borisy, G. G. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009-1026.PubMedGoogle Scholar
  477. Svoboda, K., Tank, D. W. and Denk, W. 1996. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716-719.PubMedGoogle Scholar
  478. Takagi, T., Konishi, K. and Mabuchi, I. 1988. Amino acid sequence of starfish oocyte depactin. J. Biol. Chem. 263, 3097-3102.PubMedGoogle Scholar
  479. Takahashi, H., Funakoshi, H. and Nakamura, T. 2003. LIM-kinase as a regulator of actin dynamics in spermatogenesis. Cytogenet. Genome. Res. 103, 290-298.PubMedGoogle Scholar
  480. Takahashi, T., Koshimizu, U., Abe, H., Obinata, T. and Nakamura, T. 2001. Functional involvement of Xenopus LIM kinases in progression of oocyte maturation. Dev. Biol. 229, 554-567.PubMedGoogle Scholar
  481. Takahashi, H., Koshimizu, U., Miyazaki, J.-I. and Nakamura, T. 2002. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev. Biol. 241, 259-272.PubMedGoogle Scholar
  482. Takahashi, H., Koshimizu, U. and Nakamura, T. 1998. A novel transcript encoding truncated LIM kinase 2 is specifically expressed in male germ cells undergoing meiosis. Biochem. Biophys. Res. Commun. 249, 138-145.PubMedGoogle Scholar
  483. Takayama, S., Bimston, D. N., Matsuzawa, S., Freeman, B. C., Aime-Sempe, C., Xie, Z., Morimoto, R. I. and Reed, J. C. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16, 4887-4896.PubMedGoogle Scholar
  484. Tanaka, K., Nishio, R., Haneda, K. and Abe, H. 2005. Functional involvement of Xenopus homologue of ADF/cofilin phosphatase, slingshot (XSSH), in the gastrulation movement. Zool. Sci. 22, 955-969.PubMedGoogle Scholar
  485. Tanaka, K., Okubo, Y. and Abe, H. 2005. Involvement of slingshot in the Rho mediated dephosphorylation of ADF/cofilin during Xenopus cleavage. Zool. Sci. 22, 971-984.PubMedGoogle Scholar
  486. Tanzi, R. E and Bertram, L. 2005. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 120, 545-555.PubMedGoogle Scholar
  487. Tassabehji, M., Read, A. P., Newton, V. E., Harris, R., Balling, R., Gruss, P. and Strachan, T. 1992. Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635-636.PubMedGoogle Scholar
  488. Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J. and Sabatini, B. L. 2005. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727-1734.PubMedGoogle Scholar
  489. Thirion, C., Stucka, R., Mendel, B., Gruhler, A., Jaksch, M., Nowak, K. J., Binz, N., Laing, N. G., Lochmuller, H. 2001. Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle. Eur J. Biochem. 263, 3473-3482.Google Scholar
  490. Tilney, L. G., Connelly, P. S. and Portnoy, D. A. 1990. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J. Cell Biol. 111, 2979-2988.PubMedGoogle Scholar
  491. Tomonaga, M. 1974. Ultrastructure of Hirano bodies. Acta Neuropathol. 28, 365-366.PubMedGoogle Scholar
  492. Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S. and Mizuno, K. 2001b. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131-1145.Google Scholar
  493. Toshima, J., Toshima, J. Y., Takeuchi, K., Mori, R. and Mizuno, K. 2001a. Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. J. Biol. Chem. 276, 31449-31458.Google Scholar
  494. Tsai, R. J., Sun, T. T. and Tseng, S. C. 1990. Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology 97, 446-455.PubMedGoogle Scholar
  495. Turgeon, P. W., Nauheim, R. C., Roat, M. I., Stopak, S. S. and Thoft, R. A. 1990. Indications for keratoepithelioplasty. Arch. Ophthalmol. 108, 233-236.PubMedGoogle Scholar
  496. Vallotton, P., Gupton, S. L., Waterman-Storer, C. M., Danuser, G. 2004. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl Acad. Sci. USA 101, 9660-9665.PubMedGoogle Scholar
  497. Van Aelst, L. and Cline, H. T. 2004. Rho GTPases and activity-dependent dendrite development. Curr. Opin. Neurobiol. 14, 297-304.PubMedGoogle Scholar
  498. Vardouli, L., Moustakas, A. and Stournaras, C. 2005. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J. Biol. Chem. 280, 11448-11457.PubMedGoogle Scholar
  499. Varga, A. E., Stourman, N. V., Zheng, Q., Safina, A. F., Quan, L., Li, X., SosseyAlaoui, K. and Bakin, A. V. 2005. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 24, 5043-5052.PubMedGoogle Scholar
  500. Vartiainen, M. K., Mustonen, T., Matilla, P. K., Ojala, P. J., Thesleff, I., Partanen, J. and Lappalainen, P. 2002. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13, 183-194.PubMedGoogle Scholar
  501. Vartiainen, M. K., Sarkkinen, E. M., Matilainen, T., Salminen, M. and Lappalainen, P. 2003. Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. J. Biol. Chem. 278, 34347-34355.PubMedGoogle Scholar
  502. Vaughn, J. E. 1989. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255-285.PubMedGoogle Scholar
  503. Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I. and Kennedy, M. B. 2004. SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872.PubMedGoogle Scholar
  504. Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M. F., Zhang, F. P., Eussen, B. E., van Ommen, G.-J. B., Blonden, L. A. J., Riggins, G. J., Chastain, J. L., Kunst, C. B., Galjaard, H., Caskey, C. T., Nelson, D. L., Oostra, B. A. and Warran, S. T. 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905-914.PubMedGoogle Scholar
  505. Verma, P., Chierzi, S., Codd, A. M., Campbell, D. S., Meyer, R. L., Holt, C. E. and Fawcett, J. W. 2005. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331-342.PubMedGoogle Scholar
  506. Visa, N., 2005. Actin in transcription. Actin is required for transcription by all three RNA polymerases in the eukaryotic cell nucleus. EMBO. Rep. 6, 218-219.PubMedGoogle Scholar
  507. Voegtli, W. C., Madrona, A. Y. and Wilson, D. K. 2003. The structure of Aip1p, a WD repeat protein that regulates cofilin-mediated actin depolymerization. J. Biol. Chem. 278, 34373-34379.PubMedGoogle Scholar
  508. Vrhovski, B., Schevzov, G., Dingle, S., Lessard, J. L., Gunning, P. and Weinberger, R. P. 2003. Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain. J. Neurosci. Res. 72, 373-383.PubMedGoogle Scholar
  509. Wachtel, M., Frei, K., Ihler, E., Fontana, A., Winterhalter, K. and Gloor, S. M. 1999. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell Sci. 112, 4347-4356.PubMedGoogle Scholar
  510. Wagner, M. C. and Molitoris, B. A. 1997. ATP depletion alters myosin I beta cellular location in LLC-PK1 cells. Am. J. Physiol. 272, 1680-1690.Google Scholar
  511. Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W. Jr., Mercer, J. A. and Kennedy, M. B. 2000. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069-4080.PubMedGoogle Scholar
  512. Wallgren-Pettersson, C., Arjomaa, P. and Holmberg, C. 1990. Alpha-actinin and myosin light chains in congenital nemaline myopathy. Pediatr. Neurol. 6, 171-174.PubMedGoogle Scholar
  513. Walther, C., Guenet, J. L., Simon, D., Deutsch, U., Jostes, B., Goulding, M. D., Plachov, D., Balling, R. and Gruss, P. 1991. Pax: A murine multigene family of paired box-containing genes. Genomics 11, 424-434.PubMedGoogle Scholar
  514. Wang, Y. L. 1985. Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J. Cell Biol. 101, 597-602.PubMedGoogle Scholar
  515. Wang, Y., Shibasaki, F. and Mizuno, K. 2005. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J. Biol. Chem. 280, 12683-12689.PubMedGoogle Scholar
  516. Waschke, J., Baumgartner, W., Adamson, R. H., Zeng, M., Aktories, K., Barth, H., Wilde, C., Curry, F. E. and Drenckhahn, D. 2004a. Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am. J. Physiol. Heart Circ. Physiol. 286, 394-401.Google Scholar
  517. Waschke, J., Curry, F. E., Adamson, R. H. and Drenckhahn, D. 2005. Regulation of actin dynamics is critical for endothelial barrier functions. Am. J. Physiol. Heart Circ. Physiol. 288, 1296-1305.Google Scholar
  518. Waschke, J., Drenckhahn, D., Adamson, R. H. and Curry, F. E. 2004b. Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am. J. Physiol. Heart Circ. Physiol. 287, 704-711.Google Scholar
  519. Waschke, J., Drenckhahn, D., Adamson, R. H. and Curry, F. E. 2004c. cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am. J. Physiol. Heart Circ. Physiol. 287, 2427-2433.Google Scholar
  520. Watanabe, N., Madaule, P., Reid, T., Ishizaki, T., Watanabe, G., Kakizuka, A., Saito, Y., Nakao, K., Jockusch, B. M. and Narumiya, S. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044-3056.PubMedGoogle Scholar
  521. Wegner, A. 1982. Treadmilling of actin at physiological salt concentrations. An analysis of the critical concentrations of actin filaments. J. Mol. Biol. 161, 607-615.PubMedGoogle Scholar
  522. Wehr, R. and Gruss, P. 1996. Pax and vertebrate development. Int. J. Dev. Biol. 40,369-377.PubMedGoogle Scholar
  523. Weinberger, R. P., Henke, R. C., Tolhurst, O., Jeffrey, P. L. and Gunning, P. 1993. Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation. J. Cell Biol. 120, 205-215.PubMedGoogle Scholar
  524. Welch, M. D., Mallavarapu, A., Rosenblatt, J. and Mitchison, T. J. 1997. Actin dynamics in vivo. Curr. Opin. Cell Biol. 9, 54-61.PubMedGoogle Scholar
  525. Westendorf, J. J. and Koka, S. 2004. Identification of FHOD1-binding proteins and mechanisms of FHOD1-regulated actin dynamics. J. Cell. Biochem. 92, 29-41.PubMedGoogle Scholar
  526. Wiggan, O., Shaw, A. E. and Bamburg, J. R. 2006. Essential requirement for Rho family GTPase signaling in Pax3 induced mesenchymal-epithelial transition. Cell Signal. 18, 1501-1514.PubMedGoogle Scholar
  527. Williams, J. C., Barratt-Boyes, B. G. and Lowe, J. B. 1961. Supravalvular aortic stenosis. Circulation 24, 1311-1318.PubMedGoogle Scholar
  528. Willis, D., Li, K. W., Zheng, J. Q., Chang, J. H., Smit, A., Kelly, T., Merianda, T. T., Sylvester, J., van Minnen, J. and Twiss, J. L. 2005. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 25, 778-791.PubMedGoogle Scholar
  529. Winder, S. J., Jess, T. and Ayscough, K. R. 2003. SCP1 encodes an actin-bundling protein in yeast. Biochem. J. 375, 287-295.PubMedGoogle Scholar
  530. Wodarz, A. 2002. Establishing cell polarity in development. Nat. Cell Biol. 4, 39-44.Google Scholar
  531. Wu, H., Reynolds, A. B., Kanner, S. B., Vines, R. R. and Parsons, J. T. 1991. Identification and characterization of a novel cytoskeleton-associated pp160src substrate. Mol. Cell. Biol. 11, 5113-5124.PubMedGoogle Scholar
  532. Yager, M. L., Hughes, J. A., Lovicu, F. J., Gunning, P. W., Weinberger, R. P. and O’Neill, G. M. 2003. Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br. J. Cancer 89, 860-863.PubMedGoogle Scholar
  533. Yamada, K. M. and Geiger, B. 1997. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76-85.PubMedGoogle Scholar
  534. Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., Segall, J., Eddy, R., Miki, H., Takenawa, T. and Condeelis, J. 2005. Molecular mechanisms of invadopodium formation: The role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441-452.PubMedGoogle Scholar
  535. Yanagisawa, N. and Goto, A. 1971. Dystonia musculorum deformans. Analysis with electromyography. J. Neurol. Sci. 13, 39-65.PubMedGoogle Scholar
  536. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E. and Mizuno, K. 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Racmediated actin reorganization. Nature 393, 809-812.PubMedGoogle Scholar
  537. Yang, E., Kim, H., Shin, J.-S., Yoon, S.-J. and Choi, I.-H. 2004a. Overexpression of LIM kinase 1 renders resistance to apoptosis in PC12 cells by inhibition of caspase activation. Cell. Mol. Neurobiol. 24, 181-192.Google Scholar
  538. Yang, E. J., Yoon, J.-H., Min, D. S. and Chung, K. C. 2004b. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells. J. Biol. Chem. 279, 8903-8910.Google Scholar
  539. Yap, C. T., Simpson, T. I., Pratt, T., Price, D. J. and Maciver, S. K. 2005. The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil. Cytoskeleton 60, 153-165.PubMedGoogle Scholar
  540. Yeoh, S., Pope, B., Mannherz, H. G. and Weeds, A. 2002. Determining the differences in actin binding by human ADF and cofilin. J. Mol. Biol. 315, 911-925.PubMedGoogle Scholar
  541. Yokoo, T., Toyoshima, H., Miura, M., Wang, Y., Iida, K. T., Suzuki, H., Sone, H., Shimano, H., Gotoda, T., Nishimori, S., Tanaka, K. and Yamada, N. 2003. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J. Biol. Chem. 278, 52919-52923.PubMedGoogle Scholar
  542. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. and Sakai, H. 1990. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem. 265, 8382-8386.PubMedGoogle Scholar
  543. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. and Sakai, H. 1991. Inhibition of actin polymerization by a synthetic dodecapeptide patterned on the sequence around the actin-binding site of cofilin. J. Biol. Chem. 266, 10485-10489.PubMedGoogle Scholar
  544. Yonezawa, N., Nishida, E., Ohba, M., Seki, M., Kumagai, H. and Sakai, H. 1989. An actin-interacting heptapeptide in the cofilin sequence. Eur. J. Biochem. 183, 235-238.PubMedGoogle Scholar
  545. Yonezawa, N., Nishida, E. and Sakai, H. 1985. pH control of actin polymerization by cofilin. J. Biol. Chem. 260, 14410-14412.PubMedGoogle Scholar
  546. Yoshioka, K., Foletta, V., Bernard, O. and Itoh, K. 2003. A role for LIM kinase in cancer invasion. Proc. Natl Acad. Sci. USA 100, 7247-7252.PubMedGoogle Scholar
  547. Yuste, R., Majewska, A. and Holthoff, K. 2000. From form to function: Calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653-659.PubMedGoogle Scholar
  548. Zebda, N., Bernard, O., Bailly, M., Welti, S., Lawrence, D. S. and Condeelis, J. S. 2000. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119-1128.PubMedGoogle Scholar
  549. Zhang, S., Buder, K., Burkhardt, C., Schlott, B., Görlach, M. and Grosse, F. 2002. Nuclear DNA helicase II/RNA helicase A binds to filamentous actin. J. Biol. Chem. 277, 843-853.PubMedGoogle Scholar
  550. Zhang, S., Köhler, C., Hemmerich, P. and Grosse, F. 2004. Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus. Exp. Cell Res. 293, 248-258.PubMedGoogle Scholar
  551. Zhang, H., Webb, D. J., Asmussen, H., Niu, S. and Horwitz, A. F. 2005. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379-3388.PubMedGoogle Scholar
  552. Zhou, Q., Homma, K. J. and Poo, M. M. 2004. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749-757.PubMedGoogle Scholar
  553. Zito, K., Knott, G., Shepherd, G. M., Shenolikar, S. and Svoboda, K. 2004. Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44, 321-334.PubMedGoogle Scholar
  554. Ziv, N. E. and Smith, S. J. 1996. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91-102.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael T. Maloney
    • 1
  • Andrew W. Kinley
    • 1
  • Chi W. Pak
    • 1
  • James R. Bamburg
    • 1
  1. 1.Department of Biochemistry and Molecular Biology and Molecular, Cellular and Integrative Neurosciences ProgramColorado State UniversityFort CollinsUSA

Personalised recommendations