Overview: Actin-Binding Protein Function and Its Relation to Disease Pathology

  • Mira Krendel
  • Enrique M. De La Cruz
Part of the Protein Reviews book series (PRON, volume 8)

The actin cytoskeleton generates force and movement responsible for many critical and fundamental cellular processes (see Chap. 1). Force generation and motility are produced by two distinct mechanisms (1) the self-assembly of actin monomers into filaments, which can exert forces against boundaries and particles such as cell membranes, vesicles, organelles, or pathogenic bacteria, and generate movement of these boundaries and (2) through the activity of contractile motor proteins of the myosin family, which generate force and motility along actin filaments. Both mechanisms utilize chemical energy in the form of ATP although hydrolysis of ATP by actin does not contribute to the force generated by actomyosin. Each monomer incorporated into a filament and each myosin mechanical “step” consumes one ATP molecule, generating ADP and Pi as the hydrolysis products.


Hair Cell Actin Filament Myosin Heavy Chain Actin Monomer Actin Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, K. M., Gleeson, J. G., Bagrodia, S., Partington, M. W., MacMillan, J. C., Cerione, R. A., Mulley, J. C. and Walsh, C. A. 1998. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25-30.CrossRefPubMedGoogle Scholar
  2. Anstee, D. J., Ridgwell, K., Tanner, M. J., Daniels, G. L. and Parsons, S. F. 1984. Individuals lacking the Gerbich blood-group antigen have alterations in the human erythrocyte membrane sialoglycoproteins beta and gamma. Biochem. J. 221, 97-104.PubMedGoogle Scholar
  3. Belyantseva, I. A., Boger, E. T., Naz, S., Frolenkov, G. I., Sellers, J. R., Ahmed, Z. M., Griffith, A. J. and Friedman T. B. 2005. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7, 148-156.CrossRefPubMedGoogle Scholar
  4. Bennett, V. and Chen, L. 2001. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 13, 61-67.CrossRefPubMedGoogle Scholar
  5. Berg, J. S., Powell, B. C. and Cheney, R. E. 2001. A millennial myosin census. Mol. Biol. Cell 12, 780-794.PubMedGoogle Scholar
  6. Blake, D. J., Weir, A., Newey, S. E. and Davies, K. E. 2002. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291-329.PubMedGoogle Scholar
  7. Boeda, B., El-Amraoui, A., Bahloul, A., Goodyear, R., Daviet, L., Blanchard, S., Perfettini, I., Fath, K. R., Shorte, S., Reiners, J., Houdusse, A., Legrain, P., Wolfrum, U., Richardson, G. and Petit, C. 2002. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689-6699.CrossRefPubMedGoogle Scholar
  8. Bonne, G., Carrier, L., Richard, P., Hainque, B. and Schwartz, K. 1998. Familial hypertrophic cardiomyopathy: From mutations to functional defects. Circ. Res. 83, 580-593.PubMedGoogle Scholar
  9. Bridgman, P. C. 1999. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045-1060.CrossRefPubMedGoogle Scholar
  10. Burch, J. M., Fassihi, H., Jones, C. A., Mengshol, S. C., Fitzpatrick, J. E., and McGrath, J. A. 2006. Kindler syndrome: A new mutation and new diagnostic possibilities. Arch. Dermatol. 142, 620-624.CrossRefPubMedGoogle Scholar
  11. Chang, A. N. and Potter, J. D. 2005. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail. Rev. 10, 225-235.CrossRefPubMedGoogle Scholar
  12. Ching, Y. H., Ghosh, T. K., Cross, S. J., Packham, E. A., Honeyman, L., Loughna, S., Robinson, T. E., Dearlove, A. M., Ribas, G., Bonser, A. J., Thomas, N. R., Scotter, A. J., Caves, L. S., Tyrrell, G. P., Newbury-Ecob, R. A., Munnich, A., Bonnet, D. and Brook, J. D. 2005. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat. Genet. 37, 423-428.CrossRefPubMedGoogle Scholar
  13. Condeelis, J., Singer, R. H. and Segall, J. E. 2005. The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695-718.CrossRefPubMedGoogle Scholar
  14. Cuda, G., Fananapazir, L., Epstein, N. D. and Sellers, J. R. 1997. The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. J. Muscle Res. Cell Motil. 18, 275-283.CrossRefPubMedGoogle Scholar
  15. Daniels, G. L., Shaw, M. A., Judson, P. A., Reid, M. E., Anstee, D. J., Colpitts, P., Cornwall, S., Moore, B. P. and Lee, S. 1986. A family demonstrating inheritance of the Leach phenotype: A Gerbich-negative phenotype associated with elliptocytosis. Vox Sang. 50, 117-121.CrossRefPubMedGoogle Scholar
  16. Donaudy, F., Ferrara, A., Esposito, L., Hertzano, R., Ben-David, O., Bell, R. E., Melchionda, S., Zelante, L., Avraham, K. B. and Gasparini, P. 2003. Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss. Am. J. Hum. Genet. 72, 1571-1577.CrossRefPubMedGoogle Scholar
  17. Donaudy, F., Snoeckx, R., Pfister, M., Zenner, H. P., Blin, N., Di Stazio, M., Ferrara, A., Lanzara, C., Ficarella, R., Declau, F., Pusch, C. M., Nurnberg, P., Melchionda, S., Zelante, L., Ballana, E., Estivill, X., Van Camp, G., Gasparini, P. and Savoia, A. 2004. Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am. J. Hum. Genet. 74, 770-776.CrossRefPubMedGoogle Scholar
  18. Donaudy, F., Zheng, L., Ficarella, R., Ballana, E., Carella, M., Melchionda, S., Estivill, X., Bartles, J. R. and Gasparini, P. 2006. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elon-gation or organisation. J. Med. Genet. 43, 157-161.CrossRefPubMedGoogle Scholar
  19. Dosaka-Akita, H., Hommura, F., Fujita, H., Kinoshita, I., Nishi, M., Morikawa, T., Katoh, H., Kawakami, Y. and Kuzumaki, N. 1998. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res. 58, 322-327.PubMedGoogle Scholar
  20. Eber, S. W., Gonzalez, J. M., Lux, M. L., Scarpa, A. L., Tse, W. T., Dornwell, M., Herbers, J., Kugler, W., Ozcan, R., Pekrun, A., Gallagher, P. G., Schroter, W., Forget, B. G. and Lux, S. E. 1996. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat. Genet. 13, 214-218.CrossRefPubMedGoogle Scholar
  21. El-Amraoui, A. and Petit, C. 2005. Usher I syndrome: Unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118, 4593-4603.CrossRefPubMedGoogle Scholar
  22. Endris, V., Wogatzky, B., Leimer, U., Bartsch, D., Zatyka, M., Latif, F., Maher, E. R., Tariverdian, G., Kirsch, S., Karch, D. and Rappold, G. A. 2002. The novel RhoGTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc. Natl Acad. Sci. USA 99, 11754-11759.CrossRefPubMedGoogle Scholar
  23. Frangiskakis, J. M., Ewart, A. K., Morris, C. A., Mervis, C. B., Bertrand, J., Robinson, B. F., Klein, B. P., Ensing, G. J., Everett, L. A., Green, E. D., Proschel, C., Gutowski, N. J., Noble, M., Atkinson, D. L., Odelberg, S. J. and Keating, M. T. 1996. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59-69.CrossRefPubMedGoogle Scholar
  24. Gibbs, D., Kitamoto, J. and Williams, D. S. 2003. Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl Acad. Sci. USA 100, 6481-6486.CrossRefPubMedGoogle Scholar
  25. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. and Winder, S. J. 2002. Functional plasticity of CH domains. FEBS Lett. 513, 98-106.CrossRefPubMedGoogle Scholar
  26. Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., Gounon, P., Sansonetti, P. J. and Cossart, P. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112(Pt 11), 1697-1708.PubMedGoogle Scholar
  27. Herz, C., Aumailley, M., Schulte, C., Schlotzer-Schrehardt, U., Bruckner-Tuderman, L. and Has, C. 2006. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation and motility of epidermal keratinocytes. J. Biol. Chem. 281, 36082-36090.CrossRefPubMedGoogle Scholar
  28. Jobard, F., Bouadjar, B., Caux, F., Hadj-Rabia, S., Has, C., Matsuda, F., Weissenbach, J., Lathrop, M., Prud’homme, J. F. and Fischer, J. 2003. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925-935.CrossRefPubMedGoogle Scholar
  29. Kaplan, J. M., Kim, S. H., North, K. N., Rennke, H., Correia, L. A., Tong, H. Q., Mathis, B. J., Rodriguez-Perez, J. C., Allen, P. G., Beggs, A. H. and Pollak, M. R. 2000. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal seg-mental glomerulosclerosis. Nat. Genet. 24, 251-256.CrossRefPubMedGoogle Scholar
  30. Kitajiri, S., Fukumoto, K., Hata, M., Sasaki, H., Katsuno, T., Nakagawa, T., Ito, J. and Tsukita, S. 2004. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J. Cell Biol. 166, 559-570.CrossRefPubMedGoogle Scholar
  31. Kurabayashi, M., Tsuchimochi, H., Komuro, I., Takaku, F. and Yazaki, Y. 1988. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J. Clin. Invest. 82, 524-531.CrossRefPubMedGoogle Scholar
  32. Lee, H. K., Driscoll, D., Asch, H., Asch, B. and Zhang, P. J. 1999. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate. Prostate 40, 14-19.CrossRefPubMedGoogle Scholar
  33. Libby, R. T., Lillo, C., Kitamoto, J., Williams, D. S. and Steel K. P. 2004. Myosin Va is required for normal photoreceptor synaptic activity. J. Cell Sci. 117, 4509-4515.CrossRefPubMedGoogle Scholar
  34. Liu, X., Ondek, B. and Williams, D. S. 1998. Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat. Genet. 19, 117-118.CrossRefPubMedGoogle Scholar
  35. Liu, X., Udovichenko, I. P., Brown, S. D., Steel, K. P. and Williams, D. S. 1999. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267-6274.PubMedGoogle Scholar
  36. Melchionda, S., Ahituv, N., Bisceglia, L., Sobe, T., Glaser, F., Rabionet, R., Arbones, M. L., Notarangelo, A., Di Iorio, E., Carella, M., Zelante, L., Estivill, X., Avraham, K. B. and Gasparini, P. 2001. MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am. J. Hum. Genet. 69, 635-640.CrossRefPubMedGoogle Scholar
  37. Miura, P. and Jasmin, B. J. 2006. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: How close are we? Trends Mol. Med. 12, 122-129.CrossRefPubMedGoogle Scholar
  38. Mohiddin, S. A., Ahmed, Z. M., Griffith, A. J., Tripodi, D., Friedman, T. B., Fananapazir, L. and Morell, R. J. 2004. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J. Med. Genet. 41, 309-314.CrossRefPubMedGoogle Scholar
  39. Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., Song, L. S., Haurogne, K., Kyndt, F., Ali, M. E., Rogers, T. B., Lederer, W. J., Escande, D., Le Marec, H. and Bennett, V. 2003. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634-639.CrossRefPubMedGoogle Scholar
  40. Nakano, T., Tani, M., Nishioka, M., Kohno, T., Otsuka, A., Ohwada, S. and Yokota, J. 2005. Genetic and epigenetic alterations of the candidate tumor-suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. Genes Chromosomes Cancer 43, 162-171.CrossRefPubMedGoogle Scholar
  41. Naz, S., Griffith, A. J., Riazuddin, S., Hampton, L. L., Battey, J. F. Jr., Khan, S. N., Wilcox, E. R. and Friedman, T. B. 2004. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. 41, 591-595.CrossRefPubMedGoogle Scholar
  42. Nishioka, M., Kohno, T., Tani, M., Yanaihara, N., Tomizawa, Y., Otsuka, A., Sasaki, S., Kobayashi, K., Niki, T., Maeshima, A., Sekido, Y., Minna, J. D., Sone, S. and Yokota, J. 2002. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc. Natl Acad. Sci. USA 99, 12269-12274.CrossRefPubMedGoogle Scholar
  43. Ochs, H. D. and Thrasher, A. J. 2006. The Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol. 117, 725-738.CrossRefPubMedGoogle Scholar
  44. Pastural, E., Barrat, F. J., Dufourcq-Lagelouse, R., Certain, S., Sanal, O., Jabado, N., Seger, R., Griscelli, C., Fischer, A. and de Saint Basile, G. 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet. 16, 289-292.CrossRefPubMedGoogle Scholar
  45. Pastural, E., Ersoy, F., Yalman, N., Wulffraat, N., Grillo, E., Ozkinay, F., Tezcan, I., Gedikoglu, G., Philippe, N., Fischer, A. and de Saint Basile, G. 2000. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299-306.CrossRefPubMedGoogle Scholar
  46. Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A., Liang, Y., Morell, R. J., Touchman, J. W., Lyons, R. H., Noben-Trauth, K., Friedman, T. B. and Camper, S. A. 1998. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444-1447.CrossRefPubMedGoogle Scholar
  47. Puius, Y. A., Mahoney, N. M. and Almo, S. C. 1998. The modular structure of actinregulatory proteins. Curr. Opin. Cell Biol. 10, 23-34.CrossRefPubMedGoogle Scholar
  48. Rayment, I., Holden, H. M., Sellers, J. R., Fananapazir, L. and Epstein, N. D. 1995. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 92, 3864-3868.CrossRefPubMedGoogle Scholar
  49. Reiners, J., Nagel-Wolfrum, K., Jurgens, K., Marker, T. and Wolfrum, U. 2006. Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 83, 97-119.CrossRefPubMedGoogle Scholar
  50. Revenu, C., Athman, R., Robine, S. and Louvard, D. 2004. The co-workers of actin filaments: From cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635-646.CrossRefPubMedGoogle Scholar
  51. Robertson, S. P. 2005. Filamin A: Phenotypic diversity. Curr. Opin. Genet. Dev. 15, 301-307.CrossRefPubMedGoogle Scholar
  52. Rottner, K., Lommel, S., Wehland, J. and Stradal, T. E. 2004. Pathogen-induced actin filament rearrangement in infectious diseases. J. Pathol. 204, 396-406.CrossRefPubMedGoogle Scholar
  53. Self, T., Mahony, M., Fleming, J., Walsh, J., Brown, S. D. and Steel, K. P. 1998. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557-566.PubMedGoogle Scholar
  54. Self, T., Sobe, T., Copeland, N. G., Jenkins, N. A., Avraham, K. B. and Steel, K. P. 1999. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol. 214, 331-341.CrossRefPubMedGoogle Scholar
  55. Seri, M., Cusano, R., Gangarossa, S., Caridi, G., Bordo, D., Lo Nigro, C., Ghiggeri, G. M., Ravazzolo, R., Savino, M., Del Vecchio, M., d’Apolito, M., Iolascon, A., Zelante, L. L., Savoia, A., Balduini, C. L., Noris, P., Magrini, U., Belletti, S., Heath, K. E., Babcock, M., Glucksman, M. J., Aliprandis, E., Bizzaro, N., Desnick, R. J. and Martignetti, J. A. 2000. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat. Genet. 26, 103-105.CrossRefPubMedGoogle Scholar
  56. Siegel, D. H., Ashton, G. H., Penagos, H. G., Lee, J. V., Feiler, H. S., Wilhelmsen, K. C., South, A. P., Smith, F. J., Prescott, A. R., Wessagowit, V., Oyama, N., Akiyama, M., Al Aboud, D., Al Aboud, K., Al Githami, A., Al Hawsawi, K., Al Ismaily, A., Al-Suwaid, R., Atherton, D. J., Caputo, R., Fine, J. D., Frieden, I. J., Fuchs, E., Haber, R. M., Harada, T., Kitajima, Y., Mallory, S. B., Ogawa, H., Sahin, S., Shimizu, H., Suga, Y., Tadini, G., Tsuchiya, K., Wiebe, C. B., Wojnarowska, F., Zaghloul, A. B., Hamada, T., Mallipeddi, R., Eady, R. A., McLean, W. H., McGrath, J. A. and Epstein E. H. 2003. Loss of kindlin-1, a human homolog of the aenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174-187.CrossRefPubMedGoogle Scholar
  57. Smith, G. L., Murphy, B. J. and Law, M. 2003. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323-342.CrossRefPubMedGoogle Scholar
  58. Stevens, J. M., Galyov, E. E. and Stevens, M. P. 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4, 91-101.CrossRefPubMedGoogle Scholar
  59. Tanaka, M., Mullauer, L., Ogiso, Y., Fujita, H., Moriya, S., Furuuchi, K., Harabayashi, T., Shinohara, N., Koyanagi, T. and Kuzumaki, N. 1995. Gelsolin: A candidate for suppressor of human bladder cancer. Cancer Res. 55, 3228-3232.PubMedGoogle Scholar
  60. Tchernia, G., Mohandas, N. and Shohet, S. B. 1981. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J. Clin. Invest. 68, 454-460.CrossRefPubMedGoogle Scholar
  61. Wachsstock, D. H., Schwartz, W. H. and Pollard, T. D. 1993. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys. J. 65, 205-214.CrossRefPubMedGoogle Scholar
  62. Wang, A., Liang, Y., Fridell, R. A., Probst, F. J., Wilcox, E. R., Touchman, J. W., Morton, C. C., Morell, R. J., Noben-Trauth, K., Camper, S. A. and Friedman, T. B. 1998. Association of unconventional myosin MYO15 mutations with human non-syndromic deafness DFNB3. Science 280, 1447-1451.CrossRefPubMedGoogle Scholar
  63. Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D., Kelley, P. M., Kimberling, W. J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K. P., Brown, S. D. M. and Petit, C. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374,60-61.CrossRefPubMedGoogle Scholar
  64. Wu, X. and Hammer, J. A. 3rd. 2000. Making sense of melanosome dynamics in mouse melanocytes. Pigment Cell Res. 13, 241-247.CrossRefPubMedGoogle Scholar
  65. Yanaihara, N., Nishioka, M., Kohno, T., Otsuka, A., Okamoto, A., Ochiai, K., Tanaka, T. and Yokota, J. 2004. Reduced expression of MYO18B, a candidate tumor-suppressor gene on chromosome arm 22q, in ovarian cancer. Int. J. Cancer 112,150-154.CrossRefPubMedGoogle Scholar
  66. Yao, J., Le, T. C., Kos, C. H., Henderson, J. M., Allen, P. G., Denker, B. M. and Pollak, M. R. 2004. Alpha-actinin-4-mediated FSGS: An inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2, e167.CrossRefPubMedGoogle Scholar
  67. Yoshida, H., Cheng, W., Hung, J., Montell, D., Geisbrecht, E., Rosen, D., Liu, J. and Naora, H. 2004. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc. Natl Acad. Sci. USA 101, 8144-8149.CrossRefPubMedGoogle Scholar
  68. Zheng, L., Sekerkova, G., Vranich, K., Tilney, L. G., Mugnaini, E. and Bartles, J. R. 2000. The deaf jerker mouse has a mutation in the gene encoding the espin actinbundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377-385.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mira Krendel
    • 1
  • Enrique M. De La Cruz
    • 2
  1. 1.Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuseUSA
  2. 2.Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations