Actin Genetic Diseases

  • John C. Sparrow
  • Nigel G. Laing
Part of the Protein Reviews book series (PRON, volume 8)

The human genome, as for other mammals, contains six actin genes, ACTA1, ACTA2, ACTB, ACTC, ACTG1, and ACTG2. Four of these genes are differentially expressed in cardiac (ACTC), smooth (ACTA2), enteric (ACTG2), and skeletal muscles (ACTA1); two are described as cytoplasmic actin genes (ACTB and ACTG1) and are expressed in all cells.


Hair Cell Actin Gene Thin Filament Actin Monomer Congenital Myopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, P. B., Strickland, C. D., Midgett, C., Morales, A., Newburger, D. E., Poulos, M. A., Tomczak, K. K., Ryan, M. M., Iannaccone, S. T., Crawford, T. O., Laing, N. G. and Beggs, A. H. 2004. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann. Neurol. 56, 86-96.PubMedCrossRefGoogle Scholar
  2. Agrawal, P. B., Greenleaf, R. S., Tomczak, K. K., Lehtokari, V. L., WallgrenPettersson, C., Wallefeld, W., Laing, N. G., Darras, B. T., Maciver, S. K., Dormitzer, P. R., Beggs, A. H. 2007. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80, 162-167.PubMedCrossRefGoogle Scholar
  3. Akkari, P. A., Nowak, K. J., Beckman, K., Walker, K. R., Schachat, F. and Laing, N. G. 2003. Production of human skeletal α-actin proteins by the baculovirus expression system. Biochem. Biophys. Res. Commun. 307, 74-79.CrossRefGoogle Scholar
  4. An, H. and Mogami, K. 1996. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant structures. J. Mol. Biol. 260, 492-505.PubMedCrossRefGoogle Scholar
  5. Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B. and Fyrberg, E. A. 1987. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51, 221-228.PubMedCrossRefGoogle Scholar
  6. Bettinger, B. T., Gilbert, D. M. and Amberg, D. C. 2004. Actin in the nucleus. Nat. Rev. Mol. Cell Biol. 5, 410-415.PubMedCrossRefGoogle Scholar
  7. Bing, W., Razzaq, R., Sparrow, J. C. and Marston, S. 1998. Tropomyosin and troponin regulation of wild-type and E93K mutant actin filaments from Drosophila flight muscle: Charge reversal on actin changes actin-tropomyosin from ON to OFF state. J. Biol. Chem. 273, 15016-15021.PubMedCrossRefGoogle Scholar
  8. Bookwalter, C. S. and Trybus, K. M. 2006. Functional consequences of a mutation in an expressed human α-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J. Biol. Chem. 281, 16777-16784.PubMedCrossRefGoogle Scholar
  9. Brooke, M. H. 1973. Congenital fiber type disproportion. In Clinical Studies in Myology. International Congress Series No. 295. B. A. Kakulas (Editor). Excerpta Medica, Amsterdam. pp. 147-159.Google Scholar
  10. Burgess, S., Walker, M., Knight, P. J., Sparrow, J. C., Schmitz, S., Offer, G., Bullard, B., Leonard, K., Holt, J. and Trinick, J. 2004. Structural studies of arthrin: Monoubiquitinated actin. J. Mol. Biol. 341, 1161-1173.PubMedCrossRefGoogle Scholar
  11. Chen, X., Cook, R. K. and Rubenstein, P. A. 1993. Yeast actin with a mutation in the hydrophobic plug between subdomain-3 and subdomain-4 (L(266)D) displays a cold-sensitive polymerization defect. J. Cell Biol. 123, 1185-1195.PubMedCrossRefGoogle Scholar
  12. Clarke, N. F., Kidson, W., Quijano-Roy, S., Estournet, B., Ferreiro, A., Guicheney, P., Manson, J. I., Kornberg, A. J., Shield, L. K. and North, K. N. (2006). SEPN1: Associated with congenital fiber-type disproportion and insulin resistance. Ann. Neurol. 59, 546-552.PubMedCrossRefGoogle Scholar
  13. Clarke, N. F. and North, K. N. 2003. Congenital fiber type disproportion - 30 years on. J. Neuropathol. Exp. Neurol. 62, 977-989.PubMedGoogle Scholar
  14. Conen, P. E., Murphy, E. G. and Donohue, W. L. 1963. Light and electron microscopic studies of `myogranules’ in a child with hypotonia and muscle weakness. Can. Med. Assoc. J. 89, 893-896.Google Scholar
  15. Costa, C. F., Rommelaere, H., Waterschoot, D., Sethi, K. K., Nowak, K. J., Laing, N. G., Ampe, C. and Machesky, L. M. 2004. Myopathy mutations in α-skeletal-muscle actin cause a range of molecular effects. J. Cell Sci. 117, 3367-3377.PubMedCrossRefGoogle Scholar
  16. Crawford, K., Flick, R., Cloe, L., Shelly, D., Paul, R., Bove, K., Kumar, A. and Lessard, J. 2002. Mice lacking a skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol. Cell. Biol. 22, 5887-5896.PubMedCrossRefGoogle Scholar
  17. Cripps, R. M., Ball E., Stark, M. and Sparrow, J. C. 1994. Dominant flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137, 151-164.PubMedGoogle Scholar
  18. DeWan, A. T., Parrado, A. R. and Leal, S. M. 2000. A second kindred linked to DFNA20 (17q25.3) reduces the genetic interval. Clin. Genet. 63, 39-45.CrossRefGoogle Scholar
  19. Drummond, D. R., Hennessey, E. S. and Sparrow, J. C. 1992. The binding of mutant actins to profilin, ATP and DNase I. Eur. J. Biochem. 209, 171-179.PubMedCrossRefGoogle Scholar
  20. Drummond, D. R., Peckham, M., Sparrow, J. C. and White, D. C. S. 1990. Actin mutants causing changed muscle kinetics. Nature 348, 440-442.PubMedCrossRefGoogle Scholar
  21. Durling, H. J., Reilich, P., Muller-Hocker, J., Mendel, B., Pongratz, D., WallgrenPettersson, C., Gunning, P., Lochmuller, H. and Laing, N. G. 2002. De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul. Dis. 12, 947-951.CrossRefGoogle Scholar
  22. Elfenbein, J. L., Fisher, R. A., Wei, S., Morrell, R. J., Stewart, C., Friedman, T. B. and Friderici, K. 2001. Audiological aspects of the search for DFNA20: A gene causing late-onset, progressive sensoneural hearing loss. Ear Hear. 22, 279-288.PubMedCrossRefGoogle Scholar
  23. Engel, W. K. and Cunningham, G. G. 1963. Rapid examination of muscle tissue. An improved trichrome method for fresh frozen biopsy sections. Neurology 13, 919-923.PubMedGoogle Scholar
  24. Engel, A. G. and Gomez, M. R. 1967. Nemaline (Z disk) myopathy: Observations on the origin, structure, and solubility properties of the nemaline structures. J. Neuropathol. Exp. Neurol. 2, 601-619.CrossRefGoogle Scholar
  25. Erba, H. P., Eddy, R., Shows, T., Kedes, L. and Gunning, P. 1988. Structure, chromosome location and expression of the human gamma-actin gene: Differential evolution, location and expression of the cytoskeletal beta- and gamma-actin genes. Mol. Cell. Biol. 8, 1775-1789.PubMedGoogle Scholar
  26. Frey, N., Richardson, J. A. and Olson, E. N. 2000. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl Acad. Sci. USA 9, 14632-14637.CrossRefGoogle Scholar
  27. Fukui, Y. 1978. Intranuclear actin bundles induced by dimethyl sulfoxide in inter-phase nucleus of Dictyostelium. J. Cell Biol. 76, 146-157.PubMedCrossRefGoogle Scholar
  28. Fukui, Y. and Katsumaru, H. 1979. Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp. Cell Res. 120, 451-455.PubMedCrossRefGoogle Scholar
  29. Gillespie, P. G., Dumont, R. A. and Kachar, B. 2005. Have we found the tip link, a trasnsduction channel and gating spring of the hair cell? Curr. Opin. Neurobiol. 15, 389-396.PubMedCrossRefGoogle Scholar
  30. Hennessey, E. S., Drummond, D. R. and Sparrow, J. C. 1991. Post-translational processing of the amino terminus affects actin function. Eur. J. Biochem. 197, 345-352.PubMedCrossRefGoogle Scholar
  31. Hennessey, E. S., Harrison, A., Drummond, D. R. and Sparrow, J. C. 1992. Mutant actin: A dead end? J. Muscle Res. Cell Motil. 13, 127-131.PubMedCrossRefGoogle Scholar
  32. Hiromi, Y. and Hotta, Y. 1985. Actin gene mutations in Drosophila: Heat shock activation in the indirect flight muscles. EMBO J. 4, 1681-1687.PubMedGoogle Scholar
  33. Höfer, D., Ness, W. and Drenckhahn, D. 1997. Sorting of actin isoforms in chicken auditory hair cells. J. Cell Sci. 110, 765-770.PubMedGoogle Scholar
  34. Holmes, K. C., Popp, D., Gebhard, W. and Kabsch, W. 1990. Atomic model of the actin filament. Nature 288, 44-49.CrossRefGoogle Scholar
  35. Hutchinson, D. O., Charlton, A., Laing, N. G., Ilkovski, B. and North, K. N. 2006. Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: Clinical and pathological variability within a kindred. Neuromuscul. Disord. 16, 113-121.PubMedCrossRefGoogle Scholar
  36. Iannaccone, S. T., Bove, K. E., Vogler, C. A. and Buchino, J. J. 1987. Type 1 fiber size disproportion: Morphometric data from 37 children with myopathic, neuropathic, or idiopathic hypotonia. Pediatr. Pathol. 7, 395-419.PubMedCrossRefGoogle Scholar
  37. Iida, K., Iida, H. and Yahara, I. 1986. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp. Cell Res. 165, 207-215.PubMedCrossRefGoogle Scholar
  38. Ilkovski, B., Clement, S., Sewry, C., North, K. N. and Cooper, S. T. 2005. Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul. Disord. 15, 829-835.PubMedCrossRefGoogle Scholar
  39. Ilkovski, B., Nowak, K. J., Domazetovska, A., Maxwell, A. L., Clement, S., Davies, K. E., Laing, N. G., North, K. N. and Cooper, S. T. 2004. Evidence for dominant-negative effects in ACTA1 nemaline myopathy by abnormal folding, aggregation and latered polymerization of mutant actin isoforms. Hum. Mol. Genet. 13, 1727-1743.PubMedCrossRefGoogle Scholar
  40. Jockusch, B. M., Veldman, H., Griffiths, G., van Oost, B. A. and Jennekens, F. G. I. 1980. Immnuofluorescence microscopy of a myopathy. α-actinin is a major constituent of nemaline rods. Exp. Cell Res. 127, 409-420.PubMedCrossRefGoogle Scholar
  41. Joel, P. B., Fagnant, P. M. and Trybus, K. M. 2004. Expression of a nonpolymerizable actin mutant in Sf9 cells. Biochemistry 43, 11554-11559.PubMedCrossRefGoogle Scholar
  42. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. 1990. Atomic structure of the actin:DNase I complex. Nature 347, 37-44.PubMedCrossRefGoogle Scholar
  43. Kaindl, A. M., Ruschendorf, F., Krause, S., Goebel, H. H., Koehler, K., Becker, C., Pongratz, D., Muller-Hocker, J., Nurnberg, P., Stoltenburg-Didinger, G., Lochmuller, H. and Huebner, A. 2004. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J. Med. Genet. 41, 842-848.PubMedCrossRefGoogle Scholar
  44. Kuang, B. and Rubenstein, P. A. 1997. Beryllium fluoride and phalloidin restore polymerizability of a mutant yeast actin (V266G,L267G) with severely decreased hydrophobicity in a subdomain 3/4 loop. J. Biol. Chem. 272, 1237-1247.PubMedCrossRefGoogle Scholar
  45. Kudryashova, E., Kudryashov, D., Kramerova, I. and Spencer, M. J. 2005. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal myosin and ubiquitinates actin. J. Mol. Biol. 354, 413-424.PubMedCrossRefGoogle Scholar
  46. Laing, N. G., Clarke, N. F., Dye, D. E., Liyanage, K., Walker, K. R., Kobayashi, Y., Shimakawa, S., Hagiwara, T., Ouvrier, R., Sparrow, J. C., Nishino, I., North, K. N. and Nonaka, I. 2004. Actin mutations are one cause of congenital fiber type disproportion. Ann. Neurol. 56, 689-694.PubMedCrossRefGoogle Scholar
  47. Laing, N. G. and Nowak, K. J. 2005. When contractile proteins go bad: The sarcomere and skeletal muscle disease. BioEssays 27, 809-822.PubMedCrossRefGoogle Scholar
  48. Lake, B. D. and Wilson, J. 1975. Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J. Neurol. Sci. 24, 437-446.PubMedCrossRefGoogle Scholar
  49. Lebart, M. C., Méjean, C., Boyer, M., Roustan, C. and Benyamin, Y. 1990. Localization of a new α-actinin binding site in the COOH-terminal part of actin sequence. Biochem. Biophys. Res. Commun. 173, 120-126.PubMedCrossRefGoogle Scholar
  50. Lorenz, M., Popp, D. and Holmes, K. C. 1993. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826-836.PubMedCrossRefGoogle Scholar
  51. Luther, P. and Squire, J. M. 2002. Muscle Z-band ultrastructure: Titin Z-repeats and Z-band periodicities do not match. J. Mol. Biol. 319, 1157-1164.PubMedCrossRefGoogle Scholar
  52. Maron, B. J. 1997. Hypertrophic cardiomyopathy. Lancet, 350, 127-133.PubMedCrossRefGoogle Scholar
  53. Marston, S., Mirza, M., Abdulrazzak, H. and Sewry, C. 2004. Functional characterisation of a mutant actin (Met132Val) from a patient with nemaline myopathy. Neuromuscul. Disord. 14, 167-174.PubMedCrossRefGoogle Scholar
  54. McGough, A., Way, M. and DeRosier, D. 1994. Determination of the α-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis. J. Cell Biol. 126, 1231-1240.CrossRefGoogle Scholar
  55. Miike, T., Ohtani, Y., Tamari, H., Ishitsu, T. and Une, Y. 1986. Muscle fiber type transformation in nemaline myopathy and congenital fiber type disproportion. Brain Dev. 8, 526-532.PubMedGoogle Scholar
  56. Milligan, R. A. 1996. Protein-protein interactions in the rigor actomyosin complex. Proc. Natl Acad. Sci. USA 93, 21-26.PubMedCrossRefGoogle Scholar
  57. Milligan, R. A., Whittaker, M. and Safer, D. 1990. Molecular structure of F-actin and location of surface binding sites. Nature 348, 217-221.PubMedCrossRefGoogle Scholar
  58. Mimura, N. and Asano, A. 1987. Further characterization of a conserved actin-binding 27-kDa fragment of actinogelin and α-actinins and mapping their binding sites on the actin molecule by chemical cross-linking. J. Biol. Chem. 262, 4717-4723.PubMedGoogle Scholar
  59. Mogensen, J., Clausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., Gregersen, N., Hansen, P. S., Baandrup, U. and Børglum, A. D. 1999. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, R39-R43.PubMedCrossRefGoogle Scholar
  60. Morell, R. J., Friderici, K. H., Wei, S., Friedman, T. B. and Fisher, R. A. 2000. A new locus for late-onset, progressive, hereditary hearing loss DFNA20 maps to 17q25. Genomics 63, 1-6.PubMedCrossRefGoogle Scholar
  61. Morris, E. P., Nneji, G. and Squire, J. M. 1990. The 3-dimensional structure of the nemaline rod Z-band. J. Cell Biol. 111, 2961-2978.PubMedCrossRefGoogle Scholar
  62. Nienhuis, A. W., Coleman, R. F., Brown, W. J., Munsat, T. L. and Pearson, C. M. 1967. Nemaline myopathy. A histopathologic and histochemical study. Am. J. Clin. Pathol. 48, 1-13.PubMedGoogle Scholar
  63. Nongthomba, U., Pasalodos-Sanchez, S., Clark, S., Clayton, J. D. and Sparrow, J. C. 2001. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles. J. Muscle Res. Cell Motil. 22, 111-119.PubMedCrossRefGoogle Scholar
  64. North, K. 2004. Congenital myopathies. In Myology. A. G. Engel and L. FranziniArmstrong (Editors), vol. 2. McGraw-Hill, New York. pp. 1473-1533.Google Scholar
  65. North, K. N., Laing, N. G., Wallgren-Pettersson, C. and the ENMC International Consortium on Nemaline myopathy (1997). J. Mol. Genet. 34, 705-713.Google Scholar
  66. Nowak, K. J., Sewry, C. A., Navarro, C., Squier, W., Reina, C., Ricoy, J. C., Jayawant S., Childs, A.-M., Dobbie, J. A., Appleton, R. E., Mountford, R. C., Walker K. R., Clement, S., Barois, A., Muntoni, F. and Laing, N. G. 2007. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann. Neurol. 61, 175-184.PubMedCrossRefGoogle Scholar
  67. Nowak, K. J., Wattanasirichaigoon, D., Goebel, H. H., Wilce, M., Pelin, K., Donner, K., Jacob, R. L., Hubner, C., Oexle, K., Anderson, J. R., Verity, C. M., North, K. N., Iannaccone, S. T., Muller, C. R., Nurnberg, P., Muntoni, F., Sewry, C., Hughes, I., Sutphen, R., Lacson, A. G., Swoboda, K. J., Vigneron, J., Wallgren-Pettersson, C., Beggs, A. H. and Laing, N. G. 1999. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208-212.PubMedCrossRefGoogle Scholar
  68. Olson, T. M., Kishimoto, N. Y., Whitby, F. G. and Michels, V. V. 2001. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723-732.PubMedCrossRefGoogle Scholar
  69. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y.-S. and Keating, M. T. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750-752.PubMedCrossRefGoogle Scholar
  70. Ono, S., Abe, H., Nagaoka, R. and Obinata, T. 1993. Co-localization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J. Muscle Res. Cell Motil. 14,195-204.PubMedCrossRefGoogle Scholar
  71. Orlova, A. and Egelman, E. H. 1993. A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 232, 334-341.PubMedCrossRefGoogle Scholar
  72. Otterbein, L. R., Graceffa, P. and Dominguez, R. 2001. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708-711.PubMedCrossRefGoogle Scholar
  73. Rayment, I., Holden, H. M., Whittaker, C. B., Yohn, M., Lorenz, K., Holmes, K. C. and Milligan, R. A. 1993. Structure of the actin-myosin complex and its implications for muscle contraction. Science 262, 58-65.CrossRefGoogle Scholar
  74. Razzaq, A., Schmitz, S., Veigel, C., Molloy, J. E., Geeves, M. A. and Sparrow, J. C. 1999. Actin residue E93 is identified as an amino acid affecting myosin binding. J. Biol. Chem. 274, 28321-28328.PubMedCrossRefGoogle Scholar
  75. Reedy, M. C., Beall, C. and Fyrberg E. A. 1991. Mutations at the N-terminus of Drosophila actin. Biophys. J. 59, 187a.Google Scholar
  76. Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Caincara, S., Guffanti, A., Minucci, S., Pelicci, C. G. and Ballabio, A. 2001. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140-2151.PubMedCrossRefGoogle Scholar
  77. Rommelaere, H., Waterschoot, D., Neirynck, K., Vanderkerckhove, J. and Ampe, C. 2003. Structural plasticity of functional actin: Pictures of actin binding protein and polymer interfaces. Structure 11, 1279-1289.PubMedCrossRefGoogle Scholar
  78. Ryan, M. M., Ilkovski, B., Strickland, C. D., Schnell, C., Sanoudou, D., Midgett, C., Houston, R., Muirhead, D., Dennett, X., Shield, L. K., De Girolami, U., Iannaccone, S. T., Laing, N. G., North, K. N. and Beggs, A. H. 2003. Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology 60,665-673.PubMedGoogle Scholar
  79. Sameshima, M., Chijiiwa, Y., Kishi, Y. and Hashimoto, Y. 1994. Novel actin rods appeared in the spores of Dictyostelium discoideum. Cell Struct. Funct. 19, 189-194.PubMedCrossRefGoogle Scholar
  80. Sameshima, M., Kishi, Y., Osumi, M., Mahadeo, D. and Cotter, D. A. 2000. Novel actin cytoskeleton: Actin tubules. Cell Struct. Funct. 25, 291-295.PubMedCrossRefGoogle Scholar
  81. Schmitz, S., Schankin, C. J., Prinz, H., Curwen, R. S., Ashton, P., Caves, L. S. D., Fink, R. H. A., Sparrow, J. C., Mayhew, P. J. and Veigel, C. 2003. Molecular evolutionary convergence of the flight muscle protein arthrin in Diptera and Hemiptera. Mol. Biol. Evol. 20, 2019-2033.PubMedCrossRefGoogle Scholar
  82. Schröder, J. M., Durling, H. and Laing, N. G. 2004. Actin myopathy with nemaline bodies, intranuclear rods and a heterozygous mutations in ACTA1 (Asp154Asn). Acta Neuropathol. 108, 250-256.PubMedGoogle Scholar
  83. Schröder, R., Reimann, J., Salmikangas, P., Clemen, C. S., Hayashi, Y. K., Nonaka, I., Arahata, K. and Carpen, O. 2003. Beyond LGMD1A: Myotilin is a component of central core lesions and nemaline rods. Neuromuscul. Disord. 13, 451-455.PubMedCrossRefGoogle Scholar
  84. Semsarian, C., Wu, M. J., Ju, Y. K., Maciniec, T., Yeoh, T., Allen, D. G., Harvey, R. P. and Graham, R. M. 1999. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576-581.PubMedCrossRefGoogle Scholar
  85. Serrano, A. L., Murgia, M., Pallafacchina, G., Calabria, E., Coniglio, P., Lomo, T. and Schiaffino, S. 2001. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc. Natl Acad. Sci. USA 98, 13108-13113.PubMedCrossRefGoogle Scholar
  86. Sheterline, P., Clayton J. and Sparrow J. 1998. Actin. Oxford University Press, Oxford.Google Scholar
  87. Shimomura, C. and Nonaka, I. 1989. Nemaline myopathy: Comparative muscle histochemistry in the severe neonatal, moderate congenital, and adult-onset forms. Pediatr. Neurol. 1, 25-31.CrossRefGoogle Scholar
  88. Shy, G. M., Engel, W. K., Somers, J. E. and Wanko, T. 1963. A new congenital myopathy. Brain 86, 793-810.PubMedCrossRefGoogle Scholar
  89. Slepecky, N. B. 1996. Structure of the mammalian cochlea. In The Cochlea. P. Dallas, A. N. Popper and R. R. Fay (Editors). Springer-Verlag, New York.Google Scholar
  90. Sparrow, J. C., Drummond, D. R., Hennessey, E. S., Clayton, J. D. and Lindegaard, F. B. 1992. Drosophila actin mutants and the study of myofibrillar assembly and function. Soc. Exp. Biol. Symp. 46, 111-129.Google Scholar
  91. Sparrow, J. C., Nowak, K., Durling, H. J., Beggs, A., Wallgren-Pettersson, C., Romero, N., Nonaka, I. and Laing, N. G. 2003. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene, ACTA1. Neuromuscul. Disord. 13, 519-531.PubMedCrossRefGoogle Scholar
  92. Sparrow, J., Reedy, M., Ball, E., Kyrtatas, V., Molloy, J., Durston, J., Hennessey E. and White, D. 1991. Functional and ultrastructural effects of a missense mutation in the indirect flight muscle-specific actin gene of Drosophila melanogaster. J. Mol. Biol. 222, 963-982.PubMedCrossRefGoogle Scholar
  93. Tan, P., Briner, J., Boltshauser, E., Davis, M. R., Wilton, S. D., North, K., WallgrenPettersson, C. and Laing, N. G. 1999. Homozygosity for a nonsense mutation in the alpha-tropomyosin gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul. Disord. 9, 573-579.PubMedCrossRefGoogle Scholar
  94. Wada, A., Fukuda, M., Mishima, M. and Nishida, E. 1998. Nuclear export of actin: A novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 17, 1635-1641.PubMedCrossRefGoogle Scholar
  95. Wallgren-Pettersson, C., Jasani, B., Newman, G. R., Morris, G. E., Jones, S., Singrao, S., Clarke, A., Virtanen, I., Holmberg, C. and Rapola, J. 1995. α-actinin in nemaline rods in congenital nemaline myopathy: Immunological confirmation by light and electron microscopy. Neuromuscul. Disord. 5, 93-104.PubMedCrossRefGoogle Scholar
  96. Wallgren-Pettersson, C. and Laing, N. G. 2006. 138th ENMC Workshop: Nemaline Myopathy, 20-22 May 2005, Naarden, The Netherlands. Neuromuscul. Disord. 16,54-60.PubMedCrossRefGoogle Scholar
  97. Waterston, R. H., Hirsh, D. and Lane, T. R. 1984. Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster. J. Mol. Biol. 180, 473-496.PubMedCrossRefGoogle Scholar
  98. Welch, W. J. and Suhan, J. P. 1985. Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101, 1198-1211.PubMedCrossRefGoogle Scholar
  99. Wertman, K. F., Drubin, D. G. and Botstein, D. 1992. Systematic mutational analysis of the yeast ACT1 gene. Proc. Natl Acad. Sci. USA 93, 91-95.Google Scholar
  100. van Wijk, E., Kreiger, E., Kemperman, M. H., De Leenheer, E. M. R., Huygen, P. L. M., Cremers, C. W. R. J., Cremers, F. P. M. and Kremer, H. (2003). A mutation in the gamma actin gene 1 (ACTG1) gene causes autosomal dominant hearing loss (DFND20/26). J. Med. Genet. 40, 879-884.PubMedCrossRefGoogle Scholar
  101. Yamaguchi, M., Robson, R., Stromer, M. H. and Dahl, D. S. 1978. Actin filaments form the backbone of nemaline myopathy rods. Nature 271, 265-267.PubMedCrossRefGoogle Scholar
  102. Yamaguchi, M., Robson, R., Stromer, M. H., Dahl, D. S. and Oda, T. 1982. Nemaline myopathy rod bodies. Structure and composition. J. Neurol. Sci. 56, 35-36.PubMedCrossRefGoogle Scholar
  103. Yang, T. and Smith, R. 2000. A novel locus of DFNA 26 maps to chromosome 17q25in two unrelated families with progressive autosomal dominant hearing loss. Am. J. Hum. Genet. 67(Suppl. 2), 300.Google Scholar
  104. Zhu, M., Yang, T., Wei, S., DeWan, A. T., Morrell, R. J., Elfenbein, J. L., Fisher, R. A., Leal, S. M., Smith, R. J. H. and Friderici, K. H. 2003. Mutations in the γ-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am. J. Hum. Genet. 73, 1082-1091.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John C. Sparrow
    • 1
  • Nigel G. Laing
    • 2
  1. 1.Department of BiologyUniversity of YorkYorkUK
  2. 2.Centre for Medical ResearchUniversity of Western Australia, Western Australian Institute for Medical Research, QEII Medical CentreNedlandsAustralia

Personalised recommendations