Skip to main content

Actin Genetic Diseases

  • Chapter
  • 1081 Accesses

Part of the book series: Protein Reviews ((PRON,volume 8))

The human genome, as for other mammals, contains six actin genes, ACTA1, ACTA2, ACTB, ACTC, ACTG1, and ACTG2. Four of these genes are differentially expressed in cardiac (ACTC), smooth (ACTA2), enteric (ACTG2), and skeletal muscles (ACTA1); two are described as cytoplasmic actin genes (ACTB and ACTG1) and are expressed in all cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, P. B., Strickland, C. D., Midgett, C., Morales, A., Newburger, D. E., Poulos, M. A., Tomczak, K. K., Ryan, M. M., Iannaccone, S. T., Crawford, T. O., Laing, N. G. and Beggs, A. H. 2004. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann. Neurol. 56, 86-96.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal, P. B., Greenleaf, R. S., Tomczak, K. K., Lehtokari, V. L., WallgrenPettersson, C., Wallefeld, W., Laing, N. G., Darras, B. T., Maciver, S. K., Dormitzer, P. R., Beggs, A. H. 2007. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80, 162-167.

    Article  PubMed  CAS  Google Scholar 

  • Akkari, P. A., Nowak, K. J., Beckman, K., Walker, K. R., Schachat, F. and Laing, N. G. 2003. Production of human skeletal α-actin proteins by the baculovirus expression system. Biochem. Biophys. Res. Commun. 307, 74-79.

    Article  CAS  Google Scholar 

  • An, H. and Mogami, K. 1996. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant structures. J. Mol. Biol. 260, 492-505.

    Article  PubMed  CAS  Google Scholar 

  • Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B. and Fyrberg, E. A. 1987. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell 51, 221-228.

    Article  PubMed  CAS  Google Scholar 

  • Bettinger, B. T., Gilbert, D. M. and Amberg, D. C. 2004. Actin in the nucleus. Nat. Rev. Mol. Cell Biol. 5, 410-415.

    Article  PubMed  CAS  Google Scholar 

  • Bing, W., Razzaq, R., Sparrow, J. C. and Marston, S. 1998. Tropomyosin and troponin regulation of wild-type and E93K mutant actin filaments from Drosophila flight muscle: Charge reversal on actin changes actin-tropomyosin from ON to OFF state. J. Biol. Chem. 273, 15016-15021.

    Article  PubMed  CAS  Google Scholar 

  • Bookwalter, C. S. and Trybus, K. M. 2006. Functional consequences of a mutation in an expressed human α-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J. Biol. Chem. 281, 16777-16784.

    Article  PubMed  CAS  Google Scholar 

  • Brooke, M. H. 1973. Congenital fiber type disproportion. In Clinical Studies in Myology. International Congress Series No. 295. B. A. Kakulas (Editor). Excerpta Medica, Amsterdam. pp. 147-159.

    Google Scholar 

  • Burgess, S., Walker, M., Knight, P. J., Sparrow, J. C., Schmitz, S., Offer, G., Bullard, B., Leonard, K., Holt, J. and Trinick, J. 2004. Structural studies of arthrin: Monoubiquitinated actin. J. Mol. Biol. 341, 1161-1173.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Cook, R. K. and Rubenstein, P. A. 1993. Yeast actin with a mutation in the hydrophobic plug between subdomain-3 and subdomain-4 (L(266)D) displays a cold-sensitive polymerization defect. J. Cell Biol. 123, 1185-1195.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, N. F., Kidson, W., Quijano-Roy, S., Estournet, B., Ferreiro, A., Guicheney, P., Manson, J. I., Kornberg, A. J., Shield, L. K. and North, K. N. (2006). SEPN1: Associated with congenital fiber-type disproportion and insulin resistance. Ann. Neurol. 59, 546-552.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, N. F. and North, K. N. 2003. Congenital fiber type disproportion - 30 years on. J. Neuropathol. Exp. Neurol. 62, 977-989.

    PubMed  Google Scholar 

  • Conen, P. E., Murphy, E. G. and Donohue, W. L. 1963. Light and electron microscopic studies of `myogranules’ in a child with hypotonia and muscle weakness. Can. Med. Assoc. J. 89, 893-896.

    Google Scholar 

  • Costa, C. F., Rommelaere, H., Waterschoot, D., Sethi, K. K., Nowak, K. J., Laing, N. G., Ampe, C. and Machesky, L. M. 2004. Myopathy mutations in α-skeletal-muscle actin cause a range of molecular effects. J. Cell Sci. 117, 3367-3377.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, K., Flick, R., Cloe, L., Shelly, D., Paul, R., Bove, K., Kumar, A. and Lessard, J. 2002. Mice lacking a skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol. Cell. Biol. 22, 5887-5896.

    Article  PubMed  CAS  Google Scholar 

  • Cripps, R. M., Ball E., Stark, M. and Sparrow, J. C. 1994. Dominant flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137, 151-164.

    PubMed  CAS  Google Scholar 

  • DeWan, A. T., Parrado, A. R. and Leal, S. M. 2000. A second kindred linked to DFNA20 (17q25.3) reduces the genetic interval. Clin. Genet. 63, 39-45.

    Article  Google Scholar 

  • Drummond, D. R., Hennessey, E. S. and Sparrow, J. C. 1992. The binding of mutant actins to profilin, ATP and DNase I. Eur. J. Biochem. 209, 171-179.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, D. R., Peckham, M., Sparrow, J. C. and White, D. C. S. 1990. Actin mutants causing changed muscle kinetics. Nature 348, 440-442.

    Article  PubMed  CAS  Google Scholar 

  • Durling, H. J., Reilich, P., Muller-Hocker, J., Mendel, B., Pongratz, D., WallgrenPettersson, C., Gunning, P., Lochmuller, H. and Laing, N. G. 2002. De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul. Dis. 12, 947-951.

    Article  CAS  Google Scholar 

  • Elfenbein, J. L., Fisher, R. A., Wei, S., Morrell, R. J., Stewart, C., Friedman, T. B. and Friderici, K. 2001. Audiological aspects of the search for DFNA20: A gene causing late-onset, progressive sensoneural hearing loss. Ear Hear. 22, 279-288.

    Article  PubMed  CAS  Google Scholar 

  • Engel, W. K. and Cunningham, G. G. 1963. Rapid examination of muscle tissue. An improved trichrome method for fresh frozen biopsy sections. Neurology 13, 919-923.

    PubMed  CAS  Google Scholar 

  • Engel, A. G. and Gomez, M. R. 1967. Nemaline (Z disk) myopathy: Observations on the origin, structure, and solubility properties of the nemaline structures. J. Neuropathol. Exp. Neurol. 2, 601-619.

    Article  Google Scholar 

  • Erba, H. P., Eddy, R., Shows, T., Kedes, L. and Gunning, P. 1988. Structure, chromosome location and expression of the human gamma-actin gene: Differential evolution, location and expression of the cytoskeletal beta- and gamma-actin genes. Mol. Cell. Biol. 8, 1775-1789.

    PubMed  CAS  Google Scholar 

  • Frey, N., Richardson, J. A. and Olson, E. N. 2000. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl Acad. Sci. USA 9, 14632-14637.

    Article  Google Scholar 

  • Fukui, Y. 1978. Intranuclear actin bundles induced by dimethyl sulfoxide in inter-phase nucleus of Dictyostelium. J. Cell Biol. 76, 146-157.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, Y. and Katsumaru, H. 1979. Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp. Cell Res. 120, 451-455.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, P. G., Dumont, R. A. and Kachar, B. 2005. Have we found the tip link, a trasnsduction channel and gating spring of the hair cell? Curr. Opin. Neurobiol. 15, 389-396.

    Article  PubMed  CAS  Google Scholar 

  • Hennessey, E. S., Drummond, D. R. and Sparrow, J. C. 1991. Post-translational processing of the amino terminus affects actin function. Eur. J. Biochem. 197, 345-352.

    Article  PubMed  CAS  Google Scholar 

  • Hennessey, E. S., Harrison, A., Drummond, D. R. and Sparrow, J. C. 1992. Mutant actin: A dead end? J. Muscle Res. Cell Motil. 13, 127-131.

    Article  PubMed  CAS  Google Scholar 

  • Hiromi, Y. and Hotta, Y. 1985. Actin gene mutations in Drosophila: Heat shock activation in the indirect flight muscles. EMBO J. 4, 1681-1687.

    PubMed  CAS  Google Scholar 

  • Höfer, D., Ness, W. and Drenckhahn, D. 1997. Sorting of actin isoforms in chicken auditory hair cells. J. Cell Sci. 110, 765-770.

    PubMed  Google Scholar 

  • Holmes, K. C., Popp, D., Gebhard, W. and Kabsch, W. 1990. Atomic model of the actin filament. Nature 288, 44-49.

    Article  Google Scholar 

  • Hutchinson, D. O., Charlton, A., Laing, N. G., Ilkovski, B. and North, K. N. 2006. Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: Clinical and pathological variability within a kindred. Neuromuscul. Disord. 16, 113-121.

    Article  PubMed  Google Scholar 

  • Iannaccone, S. T., Bove, K. E., Vogler, C. A. and Buchino, J. J. 1987. Type 1 fiber size disproportion: Morphometric data from 37 children with myopathic, neuropathic, or idiopathic hypotonia. Pediatr. Pathol. 7, 395-419.

    Article  PubMed  CAS  Google Scholar 

  • Iida, K., Iida, H. and Yahara, I. 1986. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp. Cell Res. 165, 207-215.

    Article  PubMed  CAS  Google Scholar 

  • Ilkovski, B., Clement, S., Sewry, C., North, K. N. and Cooper, S. T. 2005. Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscul. Disord. 15, 829-835.

    Article  PubMed  Google Scholar 

  • Ilkovski, B., Nowak, K. J., Domazetovska, A., Maxwell, A. L., Clement, S., Davies, K. E., Laing, N. G., North, K. N. and Cooper, S. T. 2004. Evidence for dominant-negative effects in ACTA1 nemaline myopathy by abnormal folding, aggregation and latered polymerization of mutant actin isoforms. Hum. Mol. Genet. 13, 1727-1743.

    Article  PubMed  CAS  Google Scholar 

  • Jockusch, B. M., Veldman, H., Griffiths, G., van Oost, B. A. and Jennekens, F. G. I. 1980. Immnuofluorescence microscopy of a myopathy. α-actinin is a major constituent of nemaline rods. Exp. Cell Res. 127, 409-420.

    Article  PubMed  CAS  Google Scholar 

  • Joel, P. B., Fagnant, P. M. and Trybus, K. M. 2004. Expression of a nonpolymerizable actin mutant in Sf9 cells. Biochemistry 43, 11554-11559.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. 1990. Atomic structure of the actin:DNase I complex. Nature 347, 37-44.

    Article  PubMed  CAS  Google Scholar 

  • Kaindl, A. M., Ruschendorf, F., Krause, S., Goebel, H. H., Koehler, K., Becker, C., Pongratz, D., Muller-Hocker, J., Nurnberg, P., Stoltenburg-Didinger, G., Lochmuller, H. and Huebner, A. 2004. Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J. Med. Genet. 41, 842-848.

    Article  PubMed  CAS  Google Scholar 

  • Kuang, B. and Rubenstein, P. A. 1997. Beryllium fluoride and phalloidin restore polymerizability of a mutant yeast actin (V266G,L267G) with severely decreased hydrophobicity in a subdomain 3/4 loop. J. Biol. Chem. 272, 1237-1247.

    Article  PubMed  CAS  Google Scholar 

  • Kudryashova, E., Kudryashov, D., Kramerova, I. and Spencer, M. J. 2005. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal myosin and ubiquitinates actin. J. Mol. Biol. 354, 413-424.

    Article  PubMed  CAS  Google Scholar 

  • Laing, N. G., Clarke, N. F., Dye, D. E., Liyanage, K., Walker, K. R., Kobayashi, Y., Shimakawa, S., Hagiwara, T., Ouvrier, R., Sparrow, J. C., Nishino, I., North, K. N. and Nonaka, I. 2004. Actin mutations are one cause of congenital fiber type disproportion. Ann. Neurol. 56, 689-694.

    Article  PubMed  CAS  Google Scholar 

  • Laing, N. G. and Nowak, K. J. 2005. When contractile proteins go bad: The sarcomere and skeletal muscle disease. BioEssays 27, 809-822.

    Article  PubMed  CAS  Google Scholar 

  • Lake, B. D. and Wilson, J. 1975. Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J. Neurol. Sci. 24, 437-446.

    Article  PubMed  CAS  Google Scholar 

  • Lebart, M. C., Méjean, C., Boyer, M., Roustan, C. and Benyamin, Y. 1990. Localization of a new α-actinin binding site in the COOH-terminal part of actin sequence. Biochem. Biophys. Res. Commun. 173, 120-126.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, M., Popp, D. and Holmes, K. C. 1993. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826-836.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. and Squire, J. M. 2002. Muscle Z-band ultrastructure: Titin Z-repeats and Z-band periodicities do not match. J. Mol. Biol. 319, 1157-1164.

    Article  PubMed  CAS  Google Scholar 

  • Maron, B. J. 1997. Hypertrophic cardiomyopathy. Lancet, 350, 127-133.

    Article  PubMed  CAS  Google Scholar 

  • Marston, S., Mirza, M., Abdulrazzak, H. and Sewry, C. 2004. Functional characterisation of a mutant actin (Met132Val) from a patient with nemaline myopathy. Neuromuscul. Disord. 14, 167-174.

    Article  PubMed  Google Scholar 

  • McGough, A., Way, M. and DeRosier, D. 1994. Determination of the α-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis. J. Cell Biol. 126, 1231-1240.

    Article  Google Scholar 

  • Miike, T., Ohtani, Y., Tamari, H., Ishitsu, T. and Une, Y. 1986. Muscle fiber type transformation in nemaline myopathy and congenital fiber type disproportion. Brain Dev. 8, 526-532.

    PubMed  CAS  Google Scholar 

  • Milligan, R. A. 1996. Protein-protein interactions in the rigor actomyosin complex. Proc. Natl Acad. Sci. USA 93, 21-26.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, R. A., Whittaker, M. and Safer, D. 1990. Molecular structure of F-actin and location of surface binding sites. Nature 348, 217-221.

    Article  PubMed  CAS  Google Scholar 

  • Mimura, N. and Asano, A. 1987. Further characterization of a conserved actin-binding 27-kDa fragment of actinogelin and α-actinins and mapping their binding sites on the actin molecule by chemical cross-linking. J. Biol. Chem. 262, 4717-4723.

    PubMed  CAS  Google Scholar 

  • Mogensen, J., Clausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., Gregersen, N., Hansen, P. S., Baandrup, U. and Børglum, A. D. 1999. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, R39-R43.

    Article  PubMed  CAS  Google Scholar 

  • Morell, R. J., Friderici, K. H., Wei, S., Friedman, T. B. and Fisher, R. A. 2000. A new locus for late-onset, progressive, hereditary hearing loss DFNA20 maps to 17q25. Genomics 63, 1-6.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E. P., Nneji, G. and Squire, J. M. 1990. The 3-dimensional structure of the nemaline rod Z-band. J. Cell Biol. 111, 2961-2978.

    Article  PubMed  CAS  Google Scholar 

  • Nienhuis, A. W., Coleman, R. F., Brown, W. J., Munsat, T. L. and Pearson, C. M. 1967. Nemaline myopathy. A histopathologic and histochemical study. Am. J. Clin. Pathol. 48, 1-13.

    PubMed  CAS  Google Scholar 

  • Nongthomba, U., Pasalodos-Sanchez, S., Clark, S., Clayton, J. D. and Sparrow, J. C. 2001. Expression and function of the Drosophila ACT88F actin isoform is not restricted to the indirect flight muscles. J. Muscle Res. Cell Motil. 22, 111-119.

    Article  PubMed  CAS  Google Scholar 

  • North, K. 2004. Congenital myopathies. In Myology. A. G. Engel and L. FranziniArmstrong (Editors), vol. 2. McGraw-Hill, New York. pp. 1473-1533.

    Google Scholar 

  • North, K. N., Laing, N. G., Wallgren-Pettersson, C. and the ENMC International Consortium on Nemaline myopathy (1997). J. Mol. Genet. 34, 705-713.

    CAS  Google Scholar 

  • Nowak, K. J., Sewry, C. A., Navarro, C., Squier, W., Reina, C., Ricoy, J. C., Jayawant S., Childs, A.-M., Dobbie, J. A., Appleton, R. E., Mountford, R. C., Walker K. R., Clement, S., Barois, A., Muntoni, F. and Laing, N. G. 2007. Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann. Neurol. 61, 175-184.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, K. J., Wattanasirichaigoon, D., Goebel, H. H., Wilce, M., Pelin, K., Donner, K., Jacob, R. L., Hubner, C., Oexle, K., Anderson, J. R., Verity, C. M., North, K. N., Iannaccone, S. T., Muller, C. R., Nurnberg, P., Muntoni, F., Sewry, C., Hughes, I., Sutphen, R., Lacson, A. G., Swoboda, K. J., Vigneron, J., Wallgren-Pettersson, C., Beggs, A. H. and Laing, N. G. 1999. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208-212.

    Article  PubMed  CAS  Google Scholar 

  • Olson, T. M., Kishimoto, N. Y., Whitby, F. G. and Michels, V. V. 2001. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723-732.

    Article  PubMed  CAS  Google Scholar 

  • Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y.-S. and Keating, M. T. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750-752.

    Article  PubMed  CAS  Google Scholar 

  • Ono, S., Abe, H., Nagaoka, R. and Obinata, T. 1993. Co-localization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J. Muscle Res. Cell Motil. 14,195-204.

    Article  PubMed  CAS  Google Scholar 

  • Orlova, A. and Egelman, E. H. 1993. A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 232, 334-341.

    Article  PubMed  CAS  Google Scholar 

  • Otterbein, L. R., Graceffa, P. and Dominguez, R. 2001. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708-711.

    Article  PubMed  CAS  Google Scholar 

  • Rayment, I., Holden, H. M., Whittaker, C. B., Yohn, M., Lorenz, K., Holmes, K. C. and Milligan, R. A. 1993. Structure of the actin-myosin complex and its implications for muscle contraction. Science 262, 58-65.

    Article  Google Scholar 

  • Razzaq, A., Schmitz, S., Veigel, C., Molloy, J. E., Geeves, M. A. and Sparrow, J. C. 1999. Actin residue E93 is identified as an amino acid affecting myosin binding. J. Biol. Chem. 274, 28321-28328.

    Article  PubMed  CAS  Google Scholar 

  • Reedy, M. C., Beall, C. and Fyrberg E. A. 1991. Mutations at the N-terminus of Drosophila actin. Biophys. J. 59, 187a.

    Google Scholar 

  • Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Caincara, S., Guffanti, A., Minucci, S., Pelicci, C. G. and Ballabio, A. 2001. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140-2151.

    Article  PubMed  CAS  Google Scholar 

  • Rommelaere, H., Waterschoot, D., Neirynck, K., Vanderkerckhove, J. and Ampe, C. 2003. Structural plasticity of functional actin: Pictures of actin binding protein and polymer interfaces. Structure 11, 1279-1289.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M. M., Ilkovski, B., Strickland, C. D., Schnell, C., Sanoudou, D., Midgett, C., Houston, R., Muirhead, D., Dennett, X., Shield, L. K., De Girolami, U., Iannaccone, S. T., Laing, N. G., North, K. N. and Beggs, A. H. 2003. Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology 60,665-673.

    PubMed  CAS  Google Scholar 

  • Sameshima, M., Chijiiwa, Y., Kishi, Y. and Hashimoto, Y. 1994. Novel actin rods appeared in the spores of Dictyostelium discoideum. Cell Struct. Funct. 19, 189-194.

    Article  PubMed  CAS  Google Scholar 

  • Sameshima, M., Kishi, Y., Osumi, M., Mahadeo, D. and Cotter, D. A. 2000. Novel actin cytoskeleton: Actin tubules. Cell Struct. Funct. 25, 291-295.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, S., Schankin, C. J., Prinz, H., Curwen, R. S., Ashton, P., Caves, L. S. D., Fink, R. H. A., Sparrow, J. C., Mayhew, P. J. and Veigel, C. 2003. Molecular evolutionary convergence of the flight muscle protein arthrin in Diptera and Hemiptera. Mol. Biol. Evol. 20, 2019-2033.

    Article  PubMed  CAS  Google Scholar 

  • Schröder, J. M., Durling, H. and Laing, N. G. 2004. Actin myopathy with nemaline bodies, intranuclear rods and a heterozygous mutations in ACTA1 (Asp154Asn). Acta Neuropathol. 108, 250-256.

    PubMed  Google Scholar 

  • Schröder, R., Reimann, J., Salmikangas, P., Clemen, C. S., Hayashi, Y. K., Nonaka, I., Arahata, K. and Carpen, O. 2003. Beyond LGMD1A: Myotilin is a component of central core lesions and nemaline rods. Neuromuscul. Disord. 13, 451-455.

    Article  PubMed  Google Scholar 

  • Semsarian, C., Wu, M. J., Ju, Y. K., Maciniec, T., Yeoh, T., Allen, D. G., Harvey, R. P. and Graham, R. M. 1999. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576-581.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, A. L., Murgia, M., Pallafacchina, G., Calabria, E., Coniglio, P., Lomo, T. and Schiaffino, S. 2001. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc. Natl Acad. Sci. USA 98, 13108-13113.

    Article  PubMed  CAS  Google Scholar 

  • Sheterline, P., Clayton J. and Sparrow J. 1998. Actin. Oxford University Press, Oxford.

    Google Scholar 

  • Shimomura, C. and Nonaka, I. 1989. Nemaline myopathy: Comparative muscle histochemistry in the severe neonatal, moderate congenital, and adult-onset forms. Pediatr. Neurol. 1, 25-31.

    Article  Google Scholar 

  • Shy, G. M., Engel, W. K., Somers, J. E. and Wanko, T. 1963. A new congenital myopathy. Brain 86, 793-810.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky, N. B. 1996. Structure of the mammalian cochlea. In The Cochlea. P. Dallas, A. N. Popper and R. R. Fay (Editors). Springer-Verlag, New York.

    Google Scholar 

  • Sparrow, J. C., Drummond, D. R., Hennessey, E. S., Clayton, J. D. and Lindegaard, F. B. 1992. Drosophila actin mutants and the study of myofibrillar assembly and function. Soc. Exp. Biol. Symp. 46, 111-129.

    CAS  Google Scholar 

  • Sparrow, J. C., Nowak, K., Durling, H. J., Beggs, A., Wallgren-Pettersson, C., Romero, N., Nonaka, I. and Laing, N. G. 2003. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene, ACTA1. Neuromuscul. Disord. 13, 519-531.

    Article  PubMed  Google Scholar 

  • Sparrow, J., Reedy, M., Ball, E., Kyrtatas, V., Molloy, J., Durston, J., Hennessey E. and White, D. 1991. Functional and ultrastructural effects of a missense mutation in the indirect flight muscle-specific actin gene of Drosophila melanogaster. J. Mol. Biol. 222, 963-982.

    Article  PubMed  CAS  Google Scholar 

  • Tan, P., Briner, J., Boltshauser, E., Davis, M. R., Wilton, S. D., North, K., WallgrenPettersson, C. and Laing, N. G. 1999. Homozygosity for a nonsense mutation in the alpha-tropomyosin gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul. Disord. 9, 573-579.

    Article  PubMed  CAS  Google Scholar 

  • Wada, A., Fukuda, M., Mishima, M. and Nishida, E. 1998. Nuclear export of actin: A novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 17, 1635-1641.

    Article  PubMed  CAS  Google Scholar 

  • Wallgren-Pettersson, C., Jasani, B., Newman, G. R., Morris, G. E., Jones, S., Singrao, S., Clarke, A., Virtanen, I., Holmberg, C. and Rapola, J. 1995. α-actinin in nemaline rods in congenital nemaline myopathy: Immunological confirmation by light and electron microscopy. Neuromuscul. Disord. 5, 93-104.

    Article  PubMed  CAS  Google Scholar 

  • Wallgren-Pettersson, C. and Laing, N. G. 2006. 138th ENMC Workshop: Nemaline Myopathy, 20-22 May 2005, Naarden, The Netherlands. Neuromuscul. Disord. 16,54-60.

    Article  PubMed  Google Scholar 

  • Waterston, R. H., Hirsh, D. and Lane, T. R. 1984. Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster. J. Mol. Biol. 180, 473-496.

    Article  PubMed  CAS  Google Scholar 

  • Welch, W. J. and Suhan, J. P. 1985. Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101, 1198-1211.

    Article  PubMed  CAS  Google Scholar 

  • Wertman, K. F., Drubin, D. G. and Botstein, D. 1992. Systematic mutational analysis of the yeast ACT1 gene. Proc. Natl Acad. Sci. USA 93, 91-95.

    Google Scholar 

  • van Wijk, E., Kreiger, E., Kemperman, M. H., De Leenheer, E. M. R., Huygen, P. L. M., Cremers, C. W. R. J., Cremers, F. P. M. and Kremer, H. (2003). A mutation in the gamma actin gene 1 (ACTG1) gene causes autosomal dominant hearing loss (DFND20/26). J. Med. Genet. 40, 879-884.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M., Robson, R., Stromer, M. H. and Dahl, D. S. 1978. Actin filaments form the backbone of nemaline myopathy rods. Nature 271, 265-267.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M., Robson, R., Stromer, M. H., Dahl, D. S. and Oda, T. 1982. Nemaline myopathy rod bodies. Structure and composition. J. Neurol. Sci. 56, 35-36.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T. and Smith, R. 2000. A novel locus of DFNA 26 maps to chromosome 17q25in two unrelated families with progressive autosomal dominant hearing loss. Am. J. Hum. Genet. 67(Suppl. 2), 300.

    Google Scholar 

  • Zhu, M., Yang, T., Wei, S., DeWan, A. T., Morrell, R. J., Elfenbein, J. L., Fisher, R. A., Leal, S. M., Smith, R. J. H. and Friderici, K. H. 2003. Mutations in the γ-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am. J. Hum. Genet. 73, 1082-1091.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sparrow, J.C., Laing, N.G. (2008). Actin Genetic Diseases. In: dos Remedios, C.G., Chhabra, D. (eds) Actin-Binding Proteins and Disease. Protein Reviews, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71749-4_2

Download citation

Publish with us

Policies and ethics