Advertisement

Actin and Its Binding Proteins in Heart Failure

  • Maurizio Stefani
  • Masako Tsubakihara
  • Brett D. Hambly
  • Choon C. Liew
  • Paul D. Allen
  • Peter S. Macdonald
  • Cristobal G. dos Remedios
Part of the Protein Reviews book series (PRON, volume 8)

Heart failure (HF) is one of the leading causes of combined morbidity and mortality among developed nations. It is the final clinical presentation of a variety of cardiovascular diseases and disorders, such as coronary artery disease, hypertension, valvular heart disease, myocarditis, diabetes, alcohol abuse, and familial cardiomyopathies (Narula et al. 1996). This pathophysiological state is characterized by progressive deterioration of ventricular function, usually in the left ventricle (LV).

Keywords

Dilate Cardiomyopathy Hypertrophic Cardiomyopathy Cardiac Troponin Serum Response Factor Idiopathic Dilate Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J. S., Jang, I.-S., Kim, D.-I., Cho, K. A., Park, Y. H., Kim, K., Kwak, C. S. and Chul Park, S. 2003. Aging-associated increase of gelsolin for apoptosis resistance. Biochem. Biophys. Res. Commun. 312, 1335-1341.CrossRefPubMedGoogle Scholar
  2. Anversa, P., Olivetti, G. and Capasso, J. M. 1991. Cellular basis of ventricular remodeling after myocardial infarction. Am. J. Cardiol. 68, 7D-16D.CrossRefPubMedGoogle Scholar
  3. Arad, M., Penas-Lado, M., Monserrat, L., Maron, B. J., Sherrid, M., Ho, C. Y., Barr, S., Karim, A., Olson, T. M., Kamisago, M., Seidman, J. G. and Seidman, C. E. 2005. Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112, 2805-2811.CrossRefPubMedGoogle Scholar
  4. Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O. and Caroni, P. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805-809.CrossRefPubMedGoogle Scholar
  5. Arber, S. and Caroni, P. 1996. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 10, 289-300.CrossRefPubMedGoogle Scholar
  6. Bauer, K., Kratzer, M., Otte, M., de Quintana, K. L., Hagmann, J., Arnold, G. J., Eckerskorn, C., Lottspeich, F. and Siess, W. 2000. Human CLP36, a PDZ-domain and LIM-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 96, 4236-4245.PubMedGoogle Scholar
  7. Beckerle, M. C. 1997. Zyxin: Zinc fingers at sites of cell adhesion. BioEssays 19, 949-957.CrossRefPubMedGoogle Scholar
  8. Bennetts B. H., Burnett, L. and dos Remedios, C. G. 1986. Differential co-expression of α-actin genes within the human heart. J. Mol. Cell. Cardiol. 18, 993-996.CrossRefPubMedGoogle Scholar
  9. Bespalova, I. N. and Burmeister, M. 2000. Identification of a novel LIM domain gene, LMCD1, and chromosomal localization in human and mouse. Genomics 63, 69-74.CrossRefPubMedGoogle Scholar
  10. Boheler, K. R., Carrier, L., de la Bastie, D., Allen, P. D., Komajda, M., Mercadier, J. J. and Schwartz, K. 1991. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J. Clin. Invest. 88, 323-330.CrossRefPubMedGoogle Scholar
  11. Bookwalter, C. S. and Trybus, K. M. 2006. Functional consequences of a mutation in an expressed human α-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J. Biol. Chem. 281, 16777-16784.CrossRefPubMedGoogle Scholar
  12. Charron, F., Paradis, P., Bronchain, O., Nemer, G. and Nemer, M. 1999. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol. Cell. Biol. 19, 4355-4365.PubMedGoogle Scholar
  13. Chu, P.-H., Bardwell, W. M., Gu, Y., Ross, J. Jr. and Chen, J. 2000. FHL2 (SLIM3) is not essential for cardiac development and function. Mol. Cell. Biol. 20, 7460-7462.CrossRefPubMedGoogle Scholar
  14. Coghill, I. D., Brown, S., Cottle, D. L., McGrath, M. J., Robinson, P. A., Nandurkar, H. H., Dyson, J. M. and Mitchell, C. A. 2003. FHL3 is an actin-binding protein that regulates α-actinin-mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J. Biol. Chem. 278, 24139-24152.CrossRefPubMedGoogle Scholar
  15. Coviello, D. A., Maron, B. J., Spirito, P., Watkins, H., Vosberg, H. P., Thierfelder, L., Schoen, F. J., Seidman, J. G. and Seidman, C. E. 1997. Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the α-tropomyosin gene. J. Am. Coll. Cardiol. 29, 635-640.CrossRefPubMedGoogle Scholar
  16. Curtiss, C., Cohn, J. N., Vrobel, T. and Franciosa, J. A. 1978. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58, 763-770.PubMedGoogle Scholar
  17. Dalton, G. R., Jones, J. V., Levi, A. J. and Levy, A. 2000. Changes in contractile protein gene expression with ageing and with captopril-induced regression of hypertrophy in the spontaneously hypertensive rats. J. Hypertens. 18, 1297-1306.CrossRefPubMedGoogle Scholar
  18. Doolan, A., Nguyen, L. and Semsarian, C. 2004. Hypertrophic hardiomyopathy: From “Heart tumour” to a complex molecular genetic disorder. Heart Lung Circ. 13,15-25.CrossRefPubMedGoogle Scholar
  19. Doolan, A., Tebo, M., Ingles, J., Nguyen, L., Tsoutsman, T., Lam, L., Chiu, C., Chung, J., Weintraub, R. G. and Semsarian, C. 2005. Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: Clinical, genetic and functional consequences. J. Mol. Cell. Cardiol. 38, 387-393.CrossRefPubMedGoogle Scholar
  20. Dubreuil, R. R. 1991. Structure and evolution of the actin crosslinking proteins. BioEssays 13, 219-226.CrossRefPubMedGoogle Scholar
  21. Earing, M. G., Ackerman, M. J. and O’Leary, P. W. 2003. Diastolic ventricular dysfunction as a marker for hypertrophic cardiomyopathy in a family with a novel α-tropomyosin mutation. J. Am. Soc. Echocardiogr. 16, 698-702.CrossRefPubMedGoogle Scholar
  22. Geier, C., Perrot, A., Ozcelik, C., Binner, P., Counsell, D., Hoffmann, K., Pilz, B., Martiniak, Y., Gehmlich, K., van der Ven, P. F. M., Furst, D. O., Vornwald, A., von Hodenberg, E., Nurnberg, P., Scheffold, T., Dietz, R. and Osterziel, K. J. 2003. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107, 1390-1395.CrossRefPubMedGoogle Scholar
  23. Gomes, A. V., Harada, K. and Potter, J. D. 2005. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca2+sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J. Mol. Cell. Cardiol. 39, 754-765.CrossRefPubMedGoogle Scholar
  24. Grubinger, M. and Gimona, M. 2004. CRP2 is an autonomous actin-binding protein. FEBS Lett. 557, 88-92.CrossRefPubMedGoogle Scholar
  25. Grzeskowiak, R., Witt, H., Drungowski, M., Thermann, R., Hennig, S., Perrot, A., Osterziel, K. J., Klingbiel, D., Scheid, S. and Spang, R. 2003. Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400-411.CrossRefPubMedGoogle Scholar
  26. Hewett, T. E., Grupp, I. L., Grupp, G. and Robbins, J. 1994. α-skeletal actin is associated with increased contractility in the mouse heart. Circ. Res. 74, 740-746.PubMedGoogle Scholar
  27. Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J. and Gessner, R. 2001. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum. Mutat. 17, 524.CrossRefPubMedGoogle Scholar
  28. Hoshijima, M. 2006. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290, H1313-H1325.CrossRefPubMedGoogle Scholar
  29. Jain, M. K., Kashiki, S., Hsieh, C. M., Layne, M. D., Yet, S. F., Sibinga, N. E., Chin, M. T., Feinberg, M. W., Woo, I., Maas, R. L., Haber, E. and Lee, M. E. 1998. Embryonic expression suggests an important role for CRP2/SmLIM in the developing cardiovascular system. Circ. Res. 83, 980-985.PubMedGoogle Scholar
  30. Johannessen, M., Moller, S., Hansen, T., Moens, U. and Van Ghelue, M. 2006. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell. Mol. Life Sci. 63, 268-284.CrossRefPubMedGoogle Scholar
  31. Jongbloed, R. J., Marcelis, C. L., Doevendans, P. A., Schmeitz-Mulkens, J. M., Van Dockum, W. G., Geraedts, J. P. and Smeets, H. J. 2003. Variable clinical manifestation of a novel missense mutation in the α-tropomyosin (TPM1) gene in familial hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 41, 981-986.CrossRefPubMedGoogle Scholar
  32. Kadrmas, J. L. and Beckerle, M. C. 2004. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5, 920-931.CrossRefPubMedGoogle Scholar
  33. Karibe, A., Tobacman, L. S., Strand, J., Butters, C., Back, N., Bachinski, L. L., Arai, A. E., Ortiz, A., Roberts, R., Homsher, E. and Fananapazir, L. 2001. Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103, 65-71.PubMedGoogle Scholar
  34. Knoll, R., Hoshijima, M., Hoffman, H. M., Person, V., Lorenzen-Schmidt, I., Bang, M., Hayashi, T., Shiga, N., Yasukawa, H. and Schaper, W. 2002. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943-955.CrossRefPubMedGoogle Scholar
  35. Kong, Y., Flick, M. J., Kudla, A. J. and Konieczny, S. F. 1997. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17, 4750-4760.PubMedGoogle Scholar
  36. Kong, Y., Shelton, J. M., Rothermel, B., Li, X., Richardson, J. A., Bassel-Duby, R. and Williams, R. S. 2001. Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to β-adrenergic stimulation. Circulation 103, 2731-2738.PubMedGoogle Scholar
  37. Kotaka, M., Kostin, S., Ngai, S., Chan, K., Lau, Y., Lee, S. M., Li, H., Ng, E. K., Schaper, J., Tsui, S. K., Fung, K., Lee, C. and Waye, M. M. 2000. Interaction of hCLIM1, an enigma family protein, with alpha-actinin 2. J. Cell. Biochem. 78, 558-565.CrossRefPubMedGoogle Scholar
  38. Kotaka, M., Ngai, S. M., Garcia-Barcelo, M., Tsui, S. K., Fung, K. P., Lee, C. Y. and Waye, M. M. 1999. Characterization of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1). J. Cell. Biochem. 72, 279-285.CrossRefPubMedGoogle Scholar
  39. Kuhlman, P. A., Hemmings, L. and Critchley, D. R. 1992. The identification and characterisation of an actin-binding site in α-actinin by mutagenesis. FEBS Lett. 304,201-206.CrossRefPubMedGoogle Scholar
  40. Kuhne, W., Besselmann, M., Noll, T., Muhs, A., Watanabe, H. and Piper, H. M. 1993. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells. Am. J. Physiol. - Heart Circ. Physiol. 264, H1599-H1608.Google Scholar
  41. Lader, A. S., Kwiatkowski, D. J. and Cantiello, H. F. 1999. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am. J. Physiol. Cell Physiol. 277, C1277-C1283.Google Scholar
  42. Lees-Miller, J. P. and Helfman, D. M. 1991. The molecular basis for tropomyosin isoform diversity. BioEssays 13, 429-437.CrossRefPubMedGoogle Scholar
  43. Levine, T. B., Francis, G. S., Goldsmith, S. R., Simon, A. B. and Cohn, J. N. 1982. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am. J. Cardiol. 49, 1659-1666.CrossRefPubMedGoogle Scholar
  44. Levine, B. A., Moir, A. J. G., Patchell, V. B. and Perry, S. V. 1992. Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett. 298, 44-48.CrossRefPubMedGoogle Scholar
  45. Lindhout, D. A., Li, M. X., Schieve, D. and Sykes, B. D. 2002. Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry 41, 7267-7274.CrossRefPubMedGoogle Scholar
  46. Louis, H. A., Pino, J. D., Schmeichel, K. L., Pomies, P. and Beckerle, M. C. 1997. Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. J. Biol. Chem. 272, 27484-27491.CrossRefPubMedGoogle Scholar
  47. Maron, B. J. 2002. Hypertrophic cardiomyopathy: A systematic review. J. Am. Med. Assoc. 287, 1308-1320.CrossRefGoogle Scholar
  48. Michele, D. E., Gomez, C. A., Hong, K. E., Westfall, M. V. and Metzger, J. M. 2002. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by β-blockade. Circ. Res. 91, 255-262.CrossRefPubMedGoogle Scholar
  49. Michels, V. V., Driscoll, D. J., Miller, F. A., Olson, T. M., Atkinson, E. J., Olswold, C. L. and Schaid, D. J. 2003. Progression of familial and non-familial dilated cardiomyopathy: Long term follow up. Heart 89, 757-761.CrossRefPubMedGoogle Scholar
  50. Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., Gregersen, N., Hansen, P. S., Baandrup, U. and Borglum, A. D. 1999. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, R39-R43.CrossRefPubMedGoogle Scholar
  51. Mogensen, J., Murphy, R. T., Kubo, T., Bahl, A., Moon, J. C., Klausen, I. C., Elliott, P. M. and McKenna, W. J. 2004c. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315-2325.CrossRefGoogle Scholar
  52. Mogensen, J., Murphy, R. T., Shaw, T., Bahl, A., Redwood, C., Watkins, H., Burke, M., Elliott, P. M. and McKenna, W. J. 2004b. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2033-2040.CrossRefGoogle Scholar
  53. Mogensen, J., Perrot, A., Andersen, P. S., Havndrup, O., Klausen, I. C., Christiansen, M., Bross, P., Egeblad, H., Bundgaard, H., Osterziel, K. J., Haltern, G., Lapp, H., Reinecke, P., Gregersen, N. and Borglum, A. D. 2004a. Clinical and genetic characteristics of α-cardiac actin gene mutations in hypertrophic cardiomyopathy. J. Med. Genet. 41, 10e.CrossRefGoogle Scholar
  54. Mohapatra, B., Jimenez, S., Lin, J. H., Bowles, K. R., Coveler, K. J., Marx, J. G., Chrisco, M. A., Murphy, R. T., Lurie, P. R. and Schwartz, R. J. 2003. Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 80, 207-215.CrossRefPubMedGoogle Scholar
  55. Morrisey, E. E., Ip, H. S., Lu, M. M. and Parmacek, M. S. 1996. GATA-6: A zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309-322.CrossRefPubMedGoogle Scholar
  56. Murphy, R. T., Kubo, T., Bahl, A., Moon, J. C., Klausen, I. C., Elliott, P. M. and McKenna, W. J. 2004. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315-2325.CrossRefPubMedGoogle Scholar
  57. Narula, J., Haider, N., Virmani, R., DiSalvo, T. G., Kolodgie, F. D., Hajjar, R. J., Schmidt, U., Semigran, M. J., Dec, G. W. and Khaw, B. 1996. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335, 1182-1189.CrossRefPubMedGoogle Scholar
  58. Nitahara, J. A., Cheng, W., Liu, Y., Li, B., Leri, A., Li, P., Mogul, D., Gambert, S. R., Kajstura, J. and Anversa, P. 1998. Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J. Mol. Cell. Cardiol. 30, 519-535.CrossRefPubMedGoogle Scholar
  59. Olson, T. M., Doan, T. P., Kishimoto, N. Y., Whitby, F. G., Ackerman, M. J. and Fananapazir, L. 2000. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 32, 1687-1694.CrossRefPubMedGoogle Scholar
  60. Olson, T. M., Kishimoto, N. Y., Whitby, F. G. and Michels, V. V. 2001. Mutations that alter the surface charge of α-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723-732.CrossRefPubMedGoogle Scholar
  61. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y.-S. and Keating, M. T. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750-752.CrossRefPubMedGoogle Scholar
  62. Pfeffer, M. A., Lamas, G. A., Vaughan, D. E., Parisi, A. F. and Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N. Engl. J. Med. 319, 80-86.PubMedCrossRefGoogle Scholar
  63. Preston, L. C., Lipscomb, S., Robinson, P., Mogensen, J., McKenna, W. J., Watkins, H., Ashley, C. C. and Redwood, C. S. 2006. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres. Eur. J. Physiol. 453, 771-776.CrossRefGoogle Scholar
  64. Purcell, N. H., Darwis, D., Bueno, O. F., Muller, J. M., Schule, R. and Molkentin, J. D. 2004. Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol. Cell. Biol. 24, 1081-1095.CrossRefPubMedGoogle Scholar
  65. Rath, N., Wang, Z., Lu, M. M. and Morrisey, E. E. 2005. LMCD1/Dyxin is a novel transcriptional cofactor that restricts GATA6 function by inhibiting DNA binding. Mol. Cell. Biol. 25, 8864-8873.CrossRefPubMedGoogle Scholar
  66. Regitz-Zagrosek, V., Erdmann, J., Wellnhofer, E., Raible, J. and Fleck, E. 2000. Novel mutation in the α-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102, E112-E116.PubMedGoogle Scholar
  67. dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A. and Nosworthy, N. J. 2003. Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433-473.PubMedGoogle Scholar
  68. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban, M., Gueffet, J. P., Millaire, A., Desnos, M., Schwartz, K., Hainque, B., Komajda, M. and Eurogene Heart Failure Project. 2003. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107, 2227-2232.CrossRefPubMedGoogle Scholar
  69. Schmidtmann, A., Lindow, C., Villard, S., Heuser, A., Mugge, A., Gessner, R., Granier, C. and Jaquet, K. 2005. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 272, 6087-6097.CrossRefPubMedGoogle Scholar
  70. Seidman, J. G. and Seidman, C. 2001. The genetic basis for cardiomyopathy, from mutation identification to mechanistic paradigms. Cell 104, 557-567.CrossRefPubMedGoogle Scholar
  71. Song, W. J., Van Keuren, M. L., Drabkin, H. A., Cypser, J. R., Gemmill, R. M. and Kurnit, D. M. 1996. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3薔3p14.3 using somatic cell hybrids. Cytogenet. Cell Genet. 75, 36-37.CrossRefPubMedGoogle Scholar
  72. Song, L., Zou, Y., Wang, J., Wang, Z., Zhen, Y., Lou, K., Zhang, Q., Wang, X., Wang, H., Li, J. and Hui, R. 2005. Mutations profile in Chinese patients with hypertrophic cardiomyopathy. Clin. Chim. Acta 351, 209-216.CrossRefPubMedGoogle Scholar
  73. Suurmeijer, A. J., Clement, S., Francesconi, A., Bocchi, L., Angelini, A., van Veldhuisen, D. J., Spagnoli, L. G., Gabbiani, G. and Orlandi, A. 2003. α-actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J. Pathol. 199, 387-397.CrossRefPubMedGoogle Scholar
  74. Taylor, M. R., Carniel, E. and Mestroni, L. 2006. Cardiomyopathy, familial dilated. Orphanet J. Rare Dis. 1, 27.CrossRefPubMedGoogle Scholar
  75. Townsend, P. J., Farza, H., MacGeoch, C., Spurr, N. K., Wade, R., Gahlmann, R., Yacoub, M. H. and Barton, P. J. 1994. Human cardiac troponin T: Identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics 21,311-316.CrossRefPubMedGoogle Scholar
  76. Tsubakihara, M. 2005. Transcription profiling study of the human heart. Ph.D. Thesis, The University of Sydney.Google Scholar
  77. Vallins, W. J., Brand, N. J., Dabhade, N., Butler-Browne, G., Yacoub, M. H. and Barton, P. J. 1990. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett. 270, 57-61.CrossRefPubMedGoogle Scholar
  78. Van Driest, S. L., Ellsworth, E. G., Ommen, S. R., Tajik, A. J., Gersh, B. J. and Ackerman, M. J. 2003. Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108, 445-451.CrossRefPubMedGoogle Scholar
  79. Van Driest, S. L., Will, M. L., Atkins, D. L. and Ackerman, M. J. 2002. A novel TPM1 mutation in a family with hypertrophic cardiomyopathy and sudden cardiac death in childhood. Am. J. Cardiol. 90, 1123-1127.CrossRefPubMedGoogle Scholar
  80. Vandekerckhove, J., Bugaisky, G. and Buckingham, M. 1986. Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J. Biol. Chem. 261,1838-1843.PubMedGoogle Scholar
  81. Vang, S., Corydon, T. J., Borglum, A. D., Scott, M. D., Frydman, J., Mogensen, J., Gregersen, N. and Bross, P. 2005. Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS Lett. 272, 2037-2049.Google Scholar
  82. Weiskirchen, R., Pino, J. D., Macalma, T., Bister, K. and Beckerle, M. C. 1995. The cysteine-rich protein family of highly related LIM domain proteins. J. Biol. Chem. 270,28946-28954.CrossRefPubMedGoogle Scholar
  83. Yamauchi-Takihara, K., Nakajima-Taniguchi, C., Matsui, H., Fujio, Y., Kunisada, K., Nagata, S. and Kishimoto, T. 1996. Clinical implications of hypertrophic cardiomyopathy associated with mutations in the α-tropomyosin gene. Heart 76, 63-65.CrossRefPubMedGoogle Scholar
  84. Yang, J., Moravec, C. S., Sussman, M. A., DiPaola, N. R., Fu, D., Hawthorn, L., Mitchell, C. A., Young, J. B., Francis, G. S., McCarthy, P. M. and Bond, M. 2000. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102, 3046-3052.PubMedGoogle Scholar
  85. Yao, M., Keogh, A., Spratt, P., dos Remedios, C. G. and Kiessling, P. C. 1996. Elevated DNase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J. Mol. Cell. Cardiol. 28, 95-101.CrossRefPubMedGoogle Scholar
  86. Zhang, X., Azhar, G., Chai, J., Sheridan, P., Nagano, K., Brown, T., Yang, G., Khrapko, K., Borras, A. M., Lawitts, J., Misra, R. P. and Wei, J. Y. 2001. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280, H1782-H1792.PubMedGoogle Scholar
  87. Zolk, O., Caroni, P. and Bohm, M. 2000. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101, 2674-2677.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maurizio Stefani
    • 1
  • Masako Tsubakihara
    • 1
  • Brett D. Hambly
    • 2
  • Choon C. Liew
    • 3
  • Paul D. Allen
    • 3
  • Peter S. Macdonald
    • 4
  • Cristobal G. dos Remedios
    • 1
  1. 1.Muscle Research Unit, Bosch Institute, School of Medical SciencesThe University of SydneySydneyAustralia
  2. 2.Department of Pathology, Bosch InstituteThe University of SydneySydneyAustralia
  3. 3.Brigham and Women’s HospitalBostonUSA
  4. 4.Victor Chang Cardiac Research Institute, and Cardiopulmonary Transplant UnitSt Vincent’s HospitalDarlinghurstAustralia

Personalised recommendations