Skip to main content

Actin and Its Binding Proteins in Heart Failure

  • Chapter
Actin-Binding Proteins and Disease

Heart failure (HF) is one of the leading causes of combined morbidity and mortality among developed nations. It is the final clinical presentation of a variety of cardiovascular diseases and disorders, such as coronary artery disease, hypertension, valvular heart disease, myocarditis, diabetes, alcohol abuse, and familial cardiomyopathies (Narula et al. 1996). This pathophysiological state is characterized by progressive deterioration of ventricular function, usually in the left ventricle (LV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, J. S., Jang, I.-S., Kim, D.-I., Cho, K. A., Park, Y. H., Kim, K., Kwak, C. S. and Chul Park, S. 2003. Aging-associated increase of gelsolin for apoptosis resistance. Biochem. Biophys. Res. Commun. 312, 1335-1341.

    Article  PubMed  CAS  Google Scholar 

  • Anversa, P., Olivetti, G. and Capasso, J. M. 1991. Cellular basis of ventricular remodeling after myocardial infarction. Am. J. Cardiol. 68, 7D-16D.

    Article  PubMed  CAS  Google Scholar 

  • Arad, M., Penas-Lado, M., Monserrat, L., Maron, B. J., Sherrid, M., Ho, C. Y., Barr, S., Karim, A., Olson, T. M., Kamisago, M., Seidman, J. G. and Seidman, C. E. 2005. Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112, 2805-2811.

    Article  PubMed  CAS  Google Scholar 

  • Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O. and Caroni, P. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805-809.

    Article  PubMed  CAS  Google Scholar 

  • Arber, S. and Caroni, P. 1996. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 10, 289-300.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, K., Kratzer, M., Otte, M., de Quintana, K. L., Hagmann, J., Arnold, G. J., Eckerskorn, C., Lottspeich, F. and Siess, W. 2000. Human CLP36, a PDZ-domain and LIM-domain protein, binds to alpha-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 96, 4236-4245.

    PubMed  CAS  Google Scholar 

  • Beckerle, M. C. 1997. Zyxin: Zinc fingers at sites of cell adhesion. BioEssays 19, 949-957.

    Article  PubMed  CAS  Google Scholar 

  • Bennetts B. H., Burnett, L. and dos Remedios, C. G. 1986. Differential co-expression of α-actin genes within the human heart. J. Mol. Cell. Cardiol. 18, 993-996.

    Article  PubMed  CAS  Google Scholar 

  • Bespalova, I. N. and Burmeister, M. 2000. Identification of a novel LIM domain gene, LMCD1, and chromosomal localization in human and mouse. Genomics 63, 69-74.

    Article  PubMed  CAS  Google Scholar 

  • Boheler, K. R., Carrier, L., de la Bastie, D., Allen, P. D., Komajda, M., Mercadier, J. J. and Schwartz, K. 1991. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J. Clin. Invest. 88, 323-330.

    Article  PubMed  CAS  Google Scholar 

  • Bookwalter, C. S. and Trybus, K. M. 2006. Functional consequences of a mutation in an expressed human α-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J. Biol. Chem. 281, 16777-16784.

    Article  PubMed  CAS  Google Scholar 

  • Charron, F., Paradis, P., Bronchain, O., Nemer, G. and Nemer, M. 1999. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol. Cell. Biol. 19, 4355-4365.

    PubMed  CAS  Google Scholar 

  • Chu, P.-H., Bardwell, W. M., Gu, Y., Ross, J. Jr. and Chen, J. 2000. FHL2 (SLIM3) is not essential for cardiac development and function. Mol. Cell. Biol. 20, 7460-7462.

    Article  PubMed  CAS  Google Scholar 

  • Coghill, I. D., Brown, S., Cottle, D. L., McGrath, M. J., Robinson, P. A., Nandurkar, H. H., Dyson, J. M. and Mitchell, C. A. 2003. FHL3 is an actin-binding protein that regulates α-actinin-mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J. Biol. Chem. 278, 24139-24152.

    Article  PubMed  CAS  Google Scholar 

  • Coviello, D. A., Maron, B. J., Spirito, P., Watkins, H., Vosberg, H. P., Thierfelder, L., Schoen, F. J., Seidman, J. G. and Seidman, C. E. 1997. Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the α-tropomyosin gene. J. Am. Coll. Cardiol. 29, 635-640.

    Article  PubMed  CAS  Google Scholar 

  • Curtiss, C., Cohn, J. N., Vrobel, T. and Franciosa, J. A. 1978. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58, 763-770.

    PubMed  CAS  Google Scholar 

  • Dalton, G. R., Jones, J. V., Levi, A. J. and Levy, A. 2000. Changes in contractile protein gene expression with ageing and with captopril-induced regression of hypertrophy in the spontaneously hypertensive rats. J. Hypertens. 18, 1297-1306.

    Article  PubMed  CAS  Google Scholar 

  • Doolan, A., Nguyen, L. and Semsarian, C. 2004. Hypertrophic hardiomyopathy: From “Heart tumour” to a complex molecular genetic disorder. Heart Lung Circ. 13,15-25.

    Article  PubMed  CAS  Google Scholar 

  • Doolan, A., Tebo, M., Ingles, J., Nguyen, L., Tsoutsman, T., Lam, L., Chiu, C., Chung, J., Weintraub, R. G. and Semsarian, C. 2005. Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: Clinical, genetic and functional consequences. J. Mol. Cell. Cardiol. 38, 387-393.

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil, R. R. 1991. Structure and evolution of the actin crosslinking proteins. BioEssays 13, 219-226.

    Article  PubMed  CAS  Google Scholar 

  • Earing, M. G., Ackerman, M. J. and O’Leary, P. W. 2003. Diastolic ventricular dysfunction as a marker for hypertrophic cardiomyopathy in a family with a novel α-tropomyosin mutation. J. Am. Soc. Echocardiogr. 16, 698-702.

    Article  PubMed  Google Scholar 

  • Geier, C., Perrot, A., Ozcelik, C., Binner, P., Counsell, D., Hoffmann, K., Pilz, B., Martiniak, Y., Gehmlich, K., van der Ven, P. F. M., Furst, D. O., Vornwald, A., von Hodenberg, E., Nurnberg, P., Scheffold, T., Dietz, R. and Osterziel, K. J. 2003. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107, 1390-1395.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, A. V., Harada, K. and Potter, J. D. 2005. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca2+sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J. Mol. Cell. Cardiol. 39, 754-765.

    Article  PubMed  CAS  Google Scholar 

  • Grubinger, M. and Gimona, M. 2004. CRP2 is an autonomous actin-binding protein. FEBS Lett. 557, 88-92.

    Article  PubMed  CAS  Google Scholar 

  • Grzeskowiak, R., Witt, H., Drungowski, M., Thermann, R., Hennig, S., Perrot, A., Osterziel, K. J., Klingbiel, D., Scheid, S. and Spang, R. 2003. Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400-411.

    Article  PubMed  CAS  Google Scholar 

  • Hewett, T. E., Grupp, I. L., Grupp, G. and Robbins, J. 1994. α-skeletal actin is associated with increased contractility in the mouse heart. Circ. Res. 74, 740-746.

    PubMed  CAS  Google Scholar 

  • Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J. and Gessner, R. 2001. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum. Mutat. 17, 524.

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima, M. 2006. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290, H1313-H1325.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M. K., Kashiki, S., Hsieh, C. M., Layne, M. D., Yet, S. F., Sibinga, N. E., Chin, M. T., Feinberg, M. W., Woo, I., Maas, R. L., Haber, E. and Lee, M. E. 1998. Embryonic expression suggests an important role for CRP2/SmLIM in the developing cardiovascular system. Circ. Res. 83, 980-985.

    PubMed  CAS  Google Scholar 

  • Johannessen, M., Moller, S., Hansen, T., Moens, U. and Van Ghelue, M. 2006. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell. Mol. Life Sci. 63, 268-284.

    Article  PubMed  CAS  Google Scholar 

  • Jongbloed, R. J., Marcelis, C. L., Doevendans, P. A., Schmeitz-Mulkens, J. M., Van Dockum, W. G., Geraedts, J. P. and Smeets, H. J. 2003. Variable clinical manifestation of a novel missense mutation in the α-tropomyosin (TPM1) gene in familial hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 41, 981-986.

    Article  PubMed  CAS  Google Scholar 

  • Kadrmas, J. L. and Beckerle, M. C. 2004. The LIM domain: From the cytoskeleton to the nucleus. Nat. Rev. Mol. Cell Biol. 5, 920-931.

    Article  PubMed  CAS  Google Scholar 

  • Karibe, A., Tobacman, L. S., Strand, J., Butters, C., Back, N., Bachinski, L. L., Arai, A. E., Ortiz, A., Roberts, R., Homsher, E. and Fananapazir, L. 2001. Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103, 65-71.

    PubMed  CAS  Google Scholar 

  • Knoll, R., Hoshijima, M., Hoffman, H. M., Person, V., Lorenzen-Schmidt, I., Bang, M., Hayashi, T., Shiga, N., Yasukawa, H. and Schaper, W. 2002. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943-955.

    Article  PubMed  CAS  Google Scholar 

  • Kong, Y., Flick, M. J., Kudla, A. J. and Konieczny, S. F. 1997. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17, 4750-4760.

    PubMed  CAS  Google Scholar 

  • Kong, Y., Shelton, J. M., Rothermel, B., Li, X., Richardson, J. A., Bassel-Duby, R. and Williams, R. S. 2001. Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to β-adrenergic stimulation. Circulation 103, 2731-2738.

    PubMed  CAS  Google Scholar 

  • Kotaka, M., Kostin, S., Ngai, S., Chan, K., Lau, Y., Lee, S. M., Li, H., Ng, E. K., Schaper, J., Tsui, S. K., Fung, K., Lee, C. and Waye, M. M. 2000. Interaction of hCLIM1, an enigma family protein, with alpha-actinin 2. J. Cell. Biochem. 78, 558-565.

    Article  PubMed  CAS  Google Scholar 

  • Kotaka, M., Ngai, S. M., Garcia-Barcelo, M., Tsui, S. K., Fung, K. P., Lee, C. Y. and Waye, M. M. 1999. Characterization of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1). J. Cell. Biochem. 72, 279-285.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman, P. A., Hemmings, L. and Critchley, D. R. 1992. The identification and characterisation of an actin-binding site in α-actinin by mutagenesis. FEBS Lett. 304,201-206.

    Article  PubMed  CAS  Google Scholar 

  • Kuhne, W., Besselmann, M., Noll, T., Muhs, A., Watanabe, H. and Piper, H. M. 1993. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells. Am. J. Physiol. - Heart Circ. Physiol. 264, H1599-H1608.

    CAS  Google Scholar 

  • Lader, A. S., Kwiatkowski, D. J. and Cantiello, H. F. 1999. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am. J. Physiol. Cell Physiol. 277, C1277-C1283.

    CAS  Google Scholar 

  • Lees-Miller, J. P. and Helfman, D. M. 1991. The molecular basis for tropomyosin isoform diversity. BioEssays 13, 429-437.

    Article  PubMed  CAS  Google Scholar 

  • Levine, T. B., Francis, G. S., Goldsmith, S. R., Simon, A. B. and Cohn, J. N. 1982. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am. J. Cardiol. 49, 1659-1666.

    Article  PubMed  CAS  Google Scholar 

  • Levine, B. A., Moir, A. J. G., Patchell, V. B. and Perry, S. V. 1992. Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett. 298, 44-48.

    Article  PubMed  CAS  Google Scholar 

  • Lindhout, D. A., Li, M. X., Schieve, D. and Sykes, B. D. 2002. Effects of T142 phosphorylation and mutation R145G on the interaction of the inhibitory region of human cardiac troponin I with the C-domain of human cardiac troponin C. Biochemistry 41, 7267-7274.

    Article  PubMed  CAS  Google Scholar 

  • Louis, H. A., Pino, J. D., Schmeichel, K. L., Pomies, P. and Beckerle, M. C. 1997. Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. J. Biol. Chem. 272, 27484-27491.

    Article  PubMed  CAS  Google Scholar 

  • Maron, B. J. 2002. Hypertrophic cardiomyopathy: A systematic review. J. Am. Med. Assoc. 287, 1308-1320.

    Article  Google Scholar 

  • Michele, D. E., Gomez, C. A., Hong, K. E., Westfall, M. V. and Metzger, J. M. 2002. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by β-blockade. Circ. Res. 91, 255-262.

    Article  PubMed  CAS  Google Scholar 

  • Michels, V. V., Driscoll, D. J., Miller, F. A., Olson, T. M., Atkinson, E. J., Olswold, C. L. and Schaid, D. J. 2003. Progression of familial and non-familial dilated cardiomyopathy: Long term follow up. Heart 89, 757-761.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., Gregersen, N., Hansen, P. S., Baandrup, U. and Borglum, A. D. 1999. α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103, R39-R43.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, J., Murphy, R. T., Kubo, T., Bahl, A., Moon, J. C., Klausen, I. C., Elliott, P. M. and McKenna, W. J. 2004c. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315-2325.

    Article  CAS  Google Scholar 

  • Mogensen, J., Murphy, R. T., Shaw, T., Bahl, A., Redwood, C., Watkins, H., Burke, M., Elliott, P. M. and McKenna, W. J. 2004b. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2033-2040.

    Article  CAS  Google Scholar 

  • Mogensen, J., Perrot, A., Andersen, P. S., Havndrup, O., Klausen, I. C., Christiansen, M., Bross, P., Egeblad, H., Bundgaard, H., Osterziel, K. J., Haltern, G., Lapp, H., Reinecke, P., Gregersen, N. and Borglum, A. D. 2004a. Clinical and genetic characteristics of α-cardiac actin gene mutations in hypertrophic cardiomyopathy. J. Med. Genet. 41, 10e.

    Article  Google Scholar 

  • Mohapatra, B., Jimenez, S., Lin, J. H., Bowles, K. R., Coveler, K. J., Marx, J. G., Chrisco, M. A., Murphy, R. T., Lurie, P. R. and Schwartz, R. J. 2003. Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 80, 207-215.

    Article  PubMed  CAS  Google Scholar 

  • Morrisey, E. E., Ip, H. S., Lu, M. M. and Parmacek, M. S. 1996. GATA-6: A zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309-322.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R. T., Kubo, T., Bahl, A., Moon, J. C., Klausen, I. C., Elliott, P. M. and McKenna, W. J. 2004. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315-2325.

    Article  PubMed  Google Scholar 

  • Narula, J., Haider, N., Virmani, R., DiSalvo, T. G., Kolodgie, F. D., Hajjar, R. J., Schmidt, U., Semigran, M. J., Dec, G. W. and Khaw, B. 1996. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335, 1182-1189.

    Article  PubMed  CAS  Google Scholar 

  • Nitahara, J. A., Cheng, W., Liu, Y., Li, B., Leri, A., Li, P., Mogul, D., Gambert, S. R., Kajstura, J. and Anversa, P. 1998. Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J. Mol. Cell. Cardiol. 30, 519-535.

    Article  PubMed  CAS  Google Scholar 

  • Olson, T. M., Doan, T. P., Kishimoto, N. Y., Whitby, F. G., Ackerman, M. J. and Fananapazir, L. 2000. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 32, 1687-1694.

    Article  PubMed  CAS  Google Scholar 

  • Olson, T. M., Kishimoto, N. Y., Whitby, F. G. and Michels, V. V. 2001. Mutations that alter the surface charge of α-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723-732.

    Article  PubMed  CAS  Google Scholar 

  • Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y.-S. and Keating, M. T. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750-752.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, M. A., Lamas, G. A., Vaughan, D. E., Parisi, A. F. and Braunwald E. 1988. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N. Engl. J. Med. 319, 80-86.

    Article  PubMed  CAS  Google Scholar 

  • Preston, L. C., Lipscomb, S., Robinson, P., Mogensen, J., McKenna, W. J., Watkins, H., Ashley, C. C. and Redwood, C. S. 2006. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres. Eur. J. Physiol. 453, 771-776.

    Article  CAS  Google Scholar 

  • Purcell, N. H., Darwis, D., Bueno, O. F., Muller, J. M., Schule, R. and Molkentin, J. D. 2004. Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol. Cell. Biol. 24, 1081-1095.

    Article  PubMed  CAS  Google Scholar 

  • Rath, N., Wang, Z., Lu, M. M. and Morrisey, E. E. 2005. LMCD1/Dyxin is a novel transcriptional cofactor that restricts GATA6 function by inhibiting DNA binding. Mol. Cell. Biol. 25, 8864-8873.

    Article  PubMed  CAS  Google Scholar 

  • Regitz-Zagrosek, V., Erdmann, J., Wellnhofer, E., Raible, J. and Fleck, E. 2000. Novel mutation in the α-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102, E112-E116.

    PubMed  CAS  Google Scholar 

  • dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A. and Nosworthy, N. J. 2003. Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433-473.

    PubMed  CAS  Google Scholar 

  • Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban, M., Gueffet, J. P., Millaire, A., Desnos, M., Schwartz, K., Hainque, B., Komajda, M. and Eurogene Heart Failure Project. 2003. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107, 2227-2232.

    Article  PubMed  Google Scholar 

  • Schmidtmann, A., Lindow, C., Villard, S., Heuser, A., Mugge, A., Gessner, R., Granier, C. and Jaquet, K. 2005. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 272, 6087-6097.

    Article  PubMed  CAS  Google Scholar 

  • Seidman, J. G. and Seidman, C. 2001. The genetic basis for cardiomyopathy, from mutation identification to mechanistic paradigms. Cell 104, 557-567.

    Article  PubMed  CAS  Google Scholar 

  • Song, W. J., Van Keuren, M. L., Drabkin, H. A., Cypser, J. R., Gemmill, R. M. and Kurnit, D. M. 1996. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3薔3p14.3 using somatic cell hybrids. Cytogenet. Cell Genet. 75, 36-37.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., Zou, Y., Wang, J., Wang, Z., Zhen, Y., Lou, K., Zhang, Q., Wang, X., Wang, H., Li, J. and Hui, R. 2005. Mutations profile in Chinese patients with hypertrophic cardiomyopathy. Clin. Chim. Acta 351, 209-216.

    Article  PubMed  CAS  Google Scholar 

  • Suurmeijer, A. J., Clement, S., Francesconi, A., Bocchi, L., Angelini, A., van Veldhuisen, D. J., Spagnoli, L. G., Gabbiani, G. and Orlandi, A. 2003. α-actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J. Pathol. 199, 387-397.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. R., Carniel, E. and Mestroni, L. 2006. Cardiomyopathy, familial dilated. Orphanet J. Rare Dis. 1, 27.

    Article  PubMed  Google Scholar 

  • Townsend, P. J., Farza, H., MacGeoch, C., Spurr, N. K., Wade, R., Gahlmann, R., Yacoub, M. H. and Barton, P. J. 1994. Human cardiac troponin T: Identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics 21,311-316.

    Article  PubMed  CAS  Google Scholar 

  • Tsubakihara, M. 2005. Transcription profiling study of the human heart. Ph.D. Thesis, The University of Sydney.

    Google Scholar 

  • Vallins, W. J., Brand, N. J., Dabhade, N., Butler-Browne, G., Yacoub, M. H. and Barton, P. J. 1990. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett. 270, 57-61.

    Article  PubMed  CAS  Google Scholar 

  • Van Driest, S. L., Ellsworth, E. G., Ommen, S. R., Tajik, A. J., Gersh, B. J. and Ackerman, M. J. 2003. Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108, 445-451.

    Article  PubMed  CAS  Google Scholar 

  • Van Driest, S. L., Will, M. L., Atkins, D. L. and Ackerman, M. J. 2002. A novel TPM1 mutation in a family with hypertrophic cardiomyopathy and sudden cardiac death in childhood. Am. J. Cardiol. 90, 1123-1127.

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., Bugaisky, G. and Buckingham, M. 1986. Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J. Biol. Chem. 261,1838-1843.

    PubMed  CAS  Google Scholar 

  • Vang, S., Corydon, T. J., Borglum, A. D., Scott, M. D., Frydman, J., Mogensen, J., Gregersen, N. and Bross, P. 2005. Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS Lett. 272, 2037-2049.

    CAS  Google Scholar 

  • Weiskirchen, R., Pino, J. D., Macalma, T., Bister, K. and Beckerle, M. C. 1995. The cysteine-rich protein family of highly related LIM domain proteins. J. Biol. Chem. 270,28946-28954.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi-Takihara, K., Nakajima-Taniguchi, C., Matsui, H., Fujio, Y., Kunisada, K., Nagata, S. and Kishimoto, T. 1996. Clinical implications of hypertrophic cardiomyopathy associated with mutations in the α-tropomyosin gene. Heart 76, 63-65.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Moravec, C. S., Sussman, M. A., DiPaola, N. R., Fu, D., Hawthorn, L., Mitchell, C. A., Young, J. B., Francis, G. S., McCarthy, P. M. and Bond, M. 2000. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102, 3046-3052.

    PubMed  CAS  Google Scholar 

  • Yao, M., Keogh, A., Spratt, P., dos Remedios, C. G. and Kiessling, P. C. 1996. Elevated DNase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J. Mol. Cell. Cardiol. 28, 95-101.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Azhar, G., Chai, J., Sheridan, P., Nagano, K., Brown, T., Yang, G., Khrapko, K., Borras, A. M., Lawitts, J., Misra, R. P. and Wei, J. Y. 2001. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280, H1782-H1792.

    PubMed  CAS  Google Scholar 

  • Zolk, O., Caroni, P. and Bohm, M. 2000. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101, 2674-2677.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stefani, M. et al. (2008). Actin and Its Binding Proteins in Heart Failure. In: dos Remedios, C.G., Chhabra, D. (eds) Actin-Binding Proteins and Disease. Protein Reviews, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71749-4_14

Download citation

Publish with us

Policies and ethics