Intracellular Pathogens and the Actin Cytoskeleton

  • E. L. Bearer
Part of the Protein Reviews book series (PRON, volume 8)

Intracellular pathogens co-opt cellular machinery in many ways. It has long been recognized that the life cycle of most viruses depends on host cell DNA replication enzymes. More recently, intracellular bacteria as well as viruses have been discovered to disrupt and redirect the host cell cytoskeleton to assist their survival and growth. Understanding pathogen-cytoskeleton interactions will provide fresh insights into targets for drug therapies or for design of immunogens for preventive vaccine development.


Actin Filament Actin Cytoskeleton Vaccinia Virus Actin Polymerization Intracellular Pathogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. L., Dobrowolski, J. M., Muller, H., Sibley, L. D. and Mansour, T. E. 1997. Cloning and characterization of actin depolymerizing factor from Toxoplasma gondii. Mol. Biochem. Parasitol. 88, 43-52.CrossRefPubMedGoogle Scholar
  2. Antinone, S. E. and Smith, G. A. 2006. Two modes of herpesvirus trafficking in neurons: Membrane acquisition directs motion. J. Virol. 80, 11235-11240.CrossRefGoogle Scholar
  3. Arhel, N., Genovesio, A., Kim, K. A., Miko, S., Perret, E., Olivo-Marin, J. C., Shorte, S. and Charneau, P. 2006. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817-824.CrossRefPubMedGoogle Scholar
  4. Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T. W., Green, J. L., Holder, A. A. and Cowman, A. F. 2006. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicom-plexan parasites. J. Biol. Chem. 281, 5197-5208.CrossRefPubMedGoogle Scholar
  5. Bearer, E. L. 1991. Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. J. Cell Biol. 115, 1629-1638.CrossRefPubMedGoogle Scholar
  6. Bearer, E. L. 1992. An actin-associated protein present in the microtubule organizing center and the growth cones of PC-12 cells. J. Neurosci. 12, 750-761.PubMedGoogle Scholar
  7. Bearer, E. L. 1995. Cytoskeletal domains in the activated platelet. Cell Motil. Cytoskeleton 30, 50-66.CrossRefGoogle Scholar
  8. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. and LaVail, J. H. 2000. Retrograde axonal transport of herpes simplex virus: Evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146-8150.CrossRefPubMedGoogle Scholar
  9. Bearer, E. L. and Satpute-Krishnan, P. 2002. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: Tracks, motors, and polymerization machines. Curr. Drug Targets Infect. Disord. 2, 247-264.CrossRefPubMedGoogle Scholar
  10. Bukrinskaya, A., Brichacek, B., Mann, A. and Stevenson, M. 1998. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113-2125.CrossRefPubMedGoogle Scholar
  11. Campbell, E. M., Nunez, R. and Hope, T. J. 2004. Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J. Virol. 78, 5745-5755.CrossRefPubMedGoogle Scholar
  12. Carlsson, F. and Brown, E. J. 2006. Actin-based motility of intracellular bacteria, and polarized surface distribution of the bacterial effector molecules. J. Cell. Physiol. 209,288-296.CrossRefPubMedGoogle Scholar
  13. Chan, K. S., Verardi, P. H., Legrand, F. A. and Yilma, T. D. 2005. Nef from pathogenic simian immunodeficiency virus is a negative factor for vaccinia virus. Proc. Natl Acad. Sci. USA 102, 8734-8739.CrossRefPubMedGoogle Scholar
  14. Chaparro-Olaya, J., Margos, G., Coles, D. J., Dluzewski, A. R., Mitchell, G. H., Wasserman, M. M. and Pinder, J. C. 2005. Plasmodium falciparum myosins: Transcription and translation during asexual parasite development. Cell Motil. Cytoskeleton 60, 200-213.CrossRefPubMedGoogle Scholar
  15. Charlton, C. A. and Volkman, L. E. 1991. Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells. J. Virol. 65,1219-1227.PubMedGoogle Scholar
  16. Cowman, A. F. and Crabb, B. S. 2006. Invasion of red blood cells by malaria parasites. Cell 124, 755-766.CrossRefPubMedGoogle Scholar
  17. DeGiorgis, J. A., Reese, T. S. and Bearer, E. L. 2002. Association of a nonmuscle myosin II with axoplasmic organelles. Mol. Biol. Cell 13, 1046-1057.CrossRefPubMedGoogle Scholar
  18. Dobrowolski, J. M. and Sibley, L. D. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84, 933-939.CrossRefPubMedGoogle Scholar
  19. Dohner, K., Radtke, K., Schmidt, S. and Sodeik, B. 2006. Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. J. Virol. 80, 8211-8224.CrossRefPubMedGoogle Scholar
  20. van Eijl, H., Hollinshead, M. and Smith, G. L. 2000. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271, 26-36.CrossRefPubMedGoogle Scholar
  21. Fackler, O. T. and Krausslich, H. G. 2006. Interactions of human retroviruses with the host cell cytoskeleton. Curr. Opin. Microbiol. 9, 409-415.CrossRefPubMedGoogle Scholar
  22. Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. and Peterlin, B. M. 1999. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol. Cell 3, 729-739.CrossRefPubMedGoogle Scholar
  23. Feierbach, B., Piccinotti, S., Bisher, M., Denk, W. and Enquist, L. W. 2006. AlphaHerpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2, e85.CrossRefPubMedGoogle Scholar
  24. Forest, T., Barnard, S. and Baines, J. D. 2005. Active intranuclear movement of herpesvirus capsids. Nat. Cell Biol. 7, 429-431.CrossRefPubMedGoogle Scholar
  25. Frischknecht, F., Moreau, V., Rottger, S., Gonfloni, S., Reckmann, I., Superti-Furga, G. and Way, M. 1999. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926-929.CrossRefPubMedGoogle Scholar
  26. Galan, J. E. and Cossart, P. 2005. Host-pathogen interactions: A diversity of themes, a variety of molecular machines. Curr. Opin. Microbiol. 8, 1-3.CrossRefPubMedGoogle Scholar
  27. Gardet, A., Breton, M., Fontanges, P., Trugnan, G. and Chwetzoff, S. 2006. Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J. Virol. 80, 3947-3956.CrossRefPubMedGoogle Scholar
  28. Gaskins, E., Gilk, S., DeVore, N., Mann, T., Ward, G. and Beckers, C. 2004. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165, 383-393.CrossRefPubMedGoogle Scholar
  29. Goley, E. D., Ohkawa, T., Mancuso, J., Woodruff, J. B., D’Alessio, J. A., Cande, W. Z., Volkman, L. E. and Welch, M. D. 2006. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314, 464-467.CrossRefPubMedGoogle Scholar
  30. Gordon, J. L. and Sibley, L. D. 2005. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 6, 179.CrossRefPubMedGoogle Scholar
  31. Gouin, E., Welch, M. D. and Cossart, P. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35-45.CrossRefPubMedGoogle Scholar
  32. Haller, C., Rauch, S., Michel, N., Hannemann, S., Lehmann, M. J., Keppler, O. T. and Fackler, O. T. 2006. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J. Biol. Chem. 281, 19618-19630.CrossRefPubMedGoogle Scholar
  33. Heintzelman, M. B. and Schwartzman, J. D. 2001. Myosin diversity in Apicomplexa. J. Parasitol. 87, 429-432.PubMedGoogle Scholar
  34. Honess, R. W. and Roizman, B. 1973. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cell. J. Virol. 12, 1347-1365.PubMedGoogle Scholar
  35. Jewett, T. J. and Sibley, L. D. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11, 885-894.CrossRefPubMedGoogle Scholar
  36. Jouvenet, N., Windsor, M., Rietdorf, J., Hawes, P., Monaghan, P., Way, M. and Wileman, T. 2006. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell. Microbiol. 8, 1803-1811.CrossRefPubMedGoogle Scholar
  37. Kasman, L. M. and Volkman, L. E. 2000. Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J. Gen. Virol. 81, 1881-1888.PubMedGoogle Scholar
  38. Katz, E., Ward, B. M., Weisberg, A. S. and Moss, B. 2003. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol. 77, 12266-12275.CrossRefPubMedGoogle Scholar
  39. Komano, J., Miyauchi, K., Matsuda, Z. and Yamamoto, N. 2004. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol. Biol. Cell 15, 5197-5207.CrossRefPubMedGoogle Scholar
  40. Kronstad, J. W. 2006. Serial analysis of gene expression in eukaryotic pathogens. Infect. Disord. Drug Targets 6, 281-297.CrossRefPubMedGoogle Scholar
  41. Lakadamyali, M., Rust, M. J., Babcock, H. P. and Zhuang, X. 2003. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280-9285.CrossRefPubMedGoogle Scholar
  42. Lehmann, M. J. and Frischknecht, F. 2006. Surfing through a sea of sharks: Report on the British Society for Cell Biology meeting on `Signaling and Cytoskeletal Dynamics During Infection’, October 2-5, 2005, Edinburgh, Scotland. Traffic 7, 479-487.CrossRefPubMedGoogle Scholar
  43. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. and Mothes, W. 2005. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317-325.CrossRefPubMedGoogle Scholar
  44. Li, Z., Kim, E. S. and Bearer, E. L. 2002. Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 99, 4466-4474.CrossRefPubMedGoogle Scholar
  45. Luxton, G. W., Haverlock, S., Coller, K. E., Antinone, S. E., Pincetic, A. and Smith, G. A. 2005. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc. Natl Acad. Sci. USA 102, 5832-5837.CrossRefPubMedGoogle Scholar
  46. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. and Pollard, T. D. 1994. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107-115.CrossRefPubMedGoogle Scholar
  47. Miller, L. H., Aikawa, M., Johnson, J. G. and Shiroishi, T. 1979. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J. Exp. Med. 149, 172-184.CrossRefPubMedGoogle Scholar
  48. Moreau, V., Frischknecht, F., Reckmann, I., Vincentelli, R., Rabut, G., Stewart, D. and Way, M. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2, 441-448.CrossRefPubMedGoogle Scholar
  49. Munter, S., Way, M. and Frischknecht, F. 2006. Signaling during pathogen infection. Sci. STKE 2006, re5.Google Scholar
  50. Newsome, T. P., Scaplehorn, N. and Way, M. 2004. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124-129.CrossRefPubMedGoogle Scholar
  51. Newsome, T. P., Weisswange, I., Frischknecht, F. and Way, M. 2006. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 8, 233-241.CrossRefPubMedGoogle Scholar
  52. Niederman, T. M., Hastings, W. R. and Ratner, L. 1993. Myristoylation-enhanced binding of the HIV-1 Nef protein to T cell skeletal matrix. Virology 197, 420-425.CrossRefPubMedGoogle Scholar
  53. Ohkawa, T., Rowe, A. R. and Volkman, L. E. 2002. Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J. Virol. 76, 12281-12289.CrossRefPubMedGoogle Scholar
  54. Quaranta, M. G., Mattioli, B., Spadaro, F., Straface, E., Giordani, L., Ramoni, C., Malorni, W. and Viora, M. 2003. HIV-1 Nef triggers Vav-mediated signaling pathway leading to functional and morphological differentiation of dendritic cells. FASEB J. 17, 2025-2036.CrossRefPubMedGoogle Scholar
  55. Radtke, K., Dohner, K. and Sodeik, B. 2006. Viral interactions with the cytoskeleton: A hitchhiker’s guide to the cell. Cell. Microbiol. 8, 387-400.CrossRefPubMedGoogle Scholar
  56. Rietdorf, J., Ploubidou, A., Reckmann, I., Holmstrom, A., Frischknecht, F., Zettl, M., Zimmermann, T. and Way, M. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3, 992-1000.CrossRefPubMedGoogle Scholar
  57. Rottger, S., Frischknecht, F., Reckmann, I., Smith, G. L. and Way, M. 1999. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863-2875.PubMedGoogle Scholar
  58. Rottner, K., Stradal, T. E. and Wehland, J. 2005. Bacteria-host-cell interactions at the plasma membrane: Stories on actin cytoskeleton subversion. Dev. Cell 9, 3-17.CrossRefPubMedGoogle Scholar
  59. Sahoo, N., Beatty, W., Heuser, J., Sept, D. and Sibley, L. D. 2006. Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol. Biol. Cell 17, 895-906.CrossRefPubMedGoogle Scholar
  60. Saksena, M. M., Wakisaka, H., Tijono, B., Boadle, R. A., Rixon, F., Takahashi, H. and Cunningham, A. L. 2006. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J. Virol. 80, 3592-3606.CrossRefPubMedGoogle Scholar
  61. Satpute-Krishnan, P., DeGiorgis, J. A. and Bearer, E. L. 2003. Fast anterograde transport of herpes simplex virus: Role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell 2, 305-318.CrossRefPubMedGoogle Scholar
  62. Satpute-Krishnan, P., DeGiorgis, J. A., Conley, M. P., Jang, M. and Bearer, E. L. 2006. A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc. Natl Acad. Sci. USA 103, 16532-16537.CrossRefPubMedGoogle Scholar
  63. Scaplehorn, N., Holmstrom, A., Moreau, V., Frischknecht, F., Reckmann, I. and Way, M. 2002. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740-745.CrossRefPubMedGoogle Scholar
  64. Schmitz, S., Grainger, M., Howell, S., Calder, L. J., Gaeb, M., Pinder, J. C., Holder, A. A. and Veigel, C. 2005. Malaria parasite actin filaments are very short. J. Mol. Biol. 349, 113-125.CrossRefPubMedGoogle Scholar
  65. Schuler, H. and Matuschewski, K. 2006. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7, 1433-1439.CrossRefPubMedGoogle Scholar
  66. Schuler, H., Mueller, A. K. and Matuschewski, K. 2005. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Mol. Biol. Cell 16, 4013-4023.CrossRefPubMedGoogle Scholar
  67. Shaw, M. K. and Tilney, L. G. 1999. Induction of an acrosomal process in Toxoplasma gondii: Visualization of actin filaments in a protozoan parasite. Proc. Natl Acad. Sci. USA 96, 9095-9099.CrossRefPubMedGoogle Scholar
  68. Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W. and Knipe, D. M. 2005. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 79, 12840-12851.CrossRefPubMedGoogle Scholar
  69. Simpson-Holley, M., Ellis, D., Fisher, D., Elton, D., McCauley, J. and Digard, P. 2002. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301, 212-225.CrossRefPubMedGoogle Scholar
  70. Smith, G. L., Murphy, B. J. and Law, M. 2003. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323-342.CrossRefPubMedGoogle Scholar
  71. Snyder, A., Wisner, T. W. and Johnson, D. C. 2006. Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins. J. Virol. 80, 11165-11177.CrossRefPubMedGoogle Scholar
  72. Svitkina, T. M., Bulanova, E. A., Chaga, O. Y., Vignjevic, D. M., Kojima, S., Vasiliev, J. M. and Borisy, G. G. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421.CrossRefPubMedGoogle Scholar
  73. Tardieux, I., Liu, X., Poupel, O., Parzy, D., Dehoux, P. and Langsley, G. 1998. A Plasmodium falciparum novel gene encoding a coronin-like protein which associates with actin filaments. FEBS Lett. 441, 251-256.CrossRefPubMedGoogle Scholar
  74. Tilney, L. G., Connelly, P. S. and Portnoy, D. A. 1990. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J. Cell Biol. 111, 2979-2988.CrossRefPubMedGoogle Scholar
  75. Way, M. 1998. Interaction of vaccinia virus with the actin cytoskeleton. Folia Microbiol. (Praha) 43, 305-310.CrossRefGoogle Scholar
  76. Welch, M. D., Iwamatsu, A. and Mitchison, T. J. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265-269.CrossRefPubMedGoogle Scholar
  77. Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. and Sweeney, H. L. 1999. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505-508.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. L. Bearer
    • 1
  1. 1.Department of Pathology and Laboratory MedicineBrown University Brown Medical SchoolProvidenceUSA

Personalised recommendations