The Role of PIP2 in Actin, Actin-Binding Proteins and Disease

  • C. G. dos Remedios
  • Neil J. Nosworthy
Part of the Protein Reviews book series (PRON, volume 8)

Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2 or more simply, PIP2 is only a minor component of the cell membrane lipids but it is the most abundant of the bisphorylated phosphoinositides. PIP2 is a key ligand in regulating the activity of a number of actin-binding proteins that regulate the assembly of actin microfilaments (Logan and Mandato 2006; Yin and Janmey 2003). Because of its central role, abnormal accumulation of PIP2 in the cell might be expected to produce defects in the assembly of cytoplasmic actin microfilaments. Similarly, a substantial reduction in cellular PIP2 is also not likely to be tolerated. Thus, mutations in enzymes that control cellular PIP2 content may be responsible, either directly or indirectly, for a number of human diseases/disorders.


Actin Cytoskeleton Actin Microfilament Glomerular Epithelial Cell Lowe Syndrome OCRL Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addis, M., Loi, M., Lepiani, C. and Melis, M. A. 2004. OCRL mutation analysis in Italian patients with Lowe syndrome. Hum. Mutat. 23, 524-525.CrossRefPubMedGoogle Scholar
  2. Bedi, D., Clarke, K. J., Dennis, J. C., Zhong, Q., Brunson, B. L., Morrison, E. E. and Judd, R. L. 2006. Endothelin-1 inhibits adiponectin secretion through a phosphatidylinositol 4,5-bisphosphate/actin-dependent mechanism. Biochem. Biophys. Res. Commun. 345, 332-339.CrossRefPubMedGoogle Scholar
  3. Bijian, K., Takano, T., Papillon, J., Le Berre, L., Michaud, J. L., Kennedy, C. R. and Cybulsky, A. V. 2005. Actin cytoskeleton regulates extracellular matrix-dependent survival signals in glomerular epithelial cells. Am. J. Physiol. Renal Physiol. 289, F1313-F1323.CrossRefPubMedGoogle Scholar
  4. Bowman, G. D., Nodelman, I. M., Hong, Y., Chua, N.-H., Lindberg, U. and Schutt, C. E. 2000. A comparative structural analysis of the ADF/cofilin family. Proteins 41,374-384.CrossRefPubMedGoogle Scholar
  5. Chamberlain, L. H. 2004. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett. 559, 1-5.CrossRefPubMedGoogle Scholar
  6. Doughman, R. L., Firestone, A. L. and Anderson, R. A. 2003. Phosphatidylinositol phosphate kinases put PI(4,5)P2 in its place. J. Membr. Biol. 194, 77-89.CrossRefPubMedGoogle Scholar
  7. Godi, A., Di Campli, A. and De Matteis, A. 2004. Phosphoinositides and membrane traffic in health and disease. Top. Curr. Genet. 10, 171-192.Google Scholar
  8. Gorbatyuk, V. Y., Nosworthy, N. J., Robson, S. A., Bains, N. P. S., Maciejewski, M. W., dos Remedios, C. G. and King, G. F. 2006. Mapping of a novel phosphoinositide binding site on chick cofilin explains how PIP2 regulated the cofilin-actin interaction. Mol. Cell 24, 511-522.CrossRefPubMedGoogle Scholar
  9. Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D. and Caroni, P. 2000. GAP43, MARKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1445-1472.CrossRefGoogle Scholar
  10. Logan, M. R. and Mandato, C. A. 2006. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell 98, 377-388.CrossRefPubMedGoogle Scholar
  11. Loi, M. 2006. Lowe syndrome. Orphanet J. Rare Dis. 1: 16.CrossRefPubMedGoogle Scholar
  12. Lowe, C. U., Terrey, M. and MacLachan, E. A. 1952. Organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. Am. J. Dis. Child. 83, 164-184.Google Scholar
  13. Mueller, O. Y., Hartsfield, J. K., Hughes, E., Crolla, J. A., Dubowitz, V. and Bobrow, M. 1985. A balanced de-novo X/autosome translocation in a girl with manifestation of Lowe syndrome. Am. J. Med. Genet. 23, 837-847.Google Scholar
  14. Nussbaum, R. L., Orrison, B. M., Janne, P. A., Charnas, L. and Chinault, A. C. 1997. Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum. Genet. 99, 145-150.CrossRefPubMedGoogle Scholar
  15. Nussbaum, R. L. and Suchy, S. F. 2001. The oculocerebrorenal syndrome of Lowe (Lowe syndrome). In Metabolic and Molecular Basis of Inherited Disease, vol. 252, 8th edition. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle (Editors). McGraw-Hill, New York. pp. 6257-6266.Google Scholar
  16. Olivos-Glander, I. M., Janne, P. A. and Nussbaum, R. L. 1995. The oculocerebrorenal syndrome gene product is a 105-kD protein localized in the Golgi complex. Am. J. Hum. Genet. 57, 817-823.PubMedGoogle Scholar
  17. van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J. and Jalink, K. 2005. PIP2 signaling in lipid domains: A critical re-evaluation. EMBO J. 24, 1664-1673.CrossRefPubMedGoogle Scholar
  18. Schafer, D. A., Jennings, P. B. and Cooper, J. A. 1996. Dynamics of capping proteins and actin assembly in vitro: Uncapping barbed ends by phosphoinositides. J. Cell Biol. 135, 169-179.CrossRefPubMedGoogle Scholar
  19. Stauffer, T. P., Ahn, S. and Meyer, T. 1998. Receptor-induced transient reduction in plasma membrane PtdIn(4,5)P2 concentration monitored in living cells. Curr. Biol. 8,343-346.CrossRefPubMedGoogle Scholar
  20. Stephens, L. R., Jackson, T. R. and Hawkins, P. T. 1993. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: A new intracellular signalling system? Biochim. Biophys. Acta 1179, 27-75.CrossRefPubMedGoogle Scholar
  21. Suchy, S. F. and Nussbaum, R. L. 2002. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420-1427.CrossRefPubMedGoogle Scholar
  22. Suchy, S. F., Olivos-Glander, I. M. and Nussbaum, R. L. 1995. Lowe syndrome, a deficiency of a phosphatidylinositol 4,5 bisphosphate 5 phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4, 2245-2250.CrossRefPubMedGoogle Scholar
  23. Yin, H. L. and Janmey, P. A. 2003. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761-789.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. G. dos Remedios
    • 1
  • Neil J. Nosworthy
    • 1
  1. 1.Muscle Research Unit, Bosch Institute, School of Medical SciencesThe University of SydneySydneyAustralia

Personalised recommendations