Skip to main content

The Role of PIP2 in Actin, Actin-Binding Proteins and Disease

  • Chapter
  • 1139 Accesses

Part of the book series: Protein Reviews ((PRON,volume 8))

Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2 or more simply, PIP2 is only a minor component of the cell membrane lipids but it is the most abundant of the bisphorylated phosphoinositides. PIP2 is a key ligand in regulating the activity of a number of actin-binding proteins that regulate the assembly of actin microfilaments (Logan and Mandato 2006; Yin and Janmey 2003). Because of its central role, abnormal accumulation of PIP2 in the cell might be expected to produce defects in the assembly of cytoplasmic actin microfilaments. Similarly, a substantial reduction in cellular PIP2 is also not likely to be tolerated. Thus, mutations in enzymes that control cellular PIP2 content may be responsible, either directly or indirectly, for a number of human diseases/disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addis, M., Loi, M., Lepiani, C. and Melis, M. A. 2004. OCRL mutation analysis in Italian patients with Lowe syndrome. Hum. Mutat. 23, 524-525.

    Article  PubMed  Google Scholar 

  • Bedi, D., Clarke, K. J., Dennis, J. C., Zhong, Q., Brunson, B. L., Morrison, E. E. and Judd, R. L. 2006. Endothelin-1 inhibits adiponectin secretion through a phosphatidylinositol 4,5-bisphosphate/actin-dependent mechanism. Biochem. Biophys. Res. Commun. 345, 332-339.

    Article  CAS  PubMed  Google Scholar 

  • Bijian, K., Takano, T., Papillon, J., Le Berre, L., Michaud, J. L., Kennedy, C. R. and Cybulsky, A. V. 2005. Actin cytoskeleton regulates extracellular matrix-dependent survival signals in glomerular epithelial cells. Am. J. Physiol. Renal Physiol. 289, F1313-F1323.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, G. D., Nodelman, I. M., Hong, Y., Chua, N.-H., Lindberg, U. and Schutt, C. E. 2000. A comparative structural analysis of the ADF/cofilin family. Proteins 41,374-384.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, L. H. 2004. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett. 559, 1-5.

    Article  CAS  PubMed  Google Scholar 

  • Doughman, R. L., Firestone, A. L. and Anderson, R. A. 2003. Phosphatidylinositol phosphate kinases put PI(4,5)P2 in its place. J. Membr. Biol. 194, 77-89.

    Article  CAS  PubMed  Google Scholar 

  • Godi, A., Di Campli, A. and De Matteis, A. 2004. Phosphoinositides and membrane traffic in health and disease. Top. Curr. Genet. 10, 171-192.

    CAS  Google Scholar 

  • Gorbatyuk, V. Y., Nosworthy, N. J., Robson, S. A., Bains, N. P. S., Maciejewski, M. W., dos Remedios, C. G. and King, G. F. 2006. Mapping of a novel phosphoinositide binding site on chick cofilin explains how PIP2 regulated the cofilin-actin interaction. Mol. Cell 24, 511-522.

    Article  CAS  PubMed  Google Scholar 

  • Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D. and Caroni, P. 2000. GAP43, MARKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1445-1472.

    Article  Google Scholar 

  • Logan, M. R. and Mandato, C. A. 2006. Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol. Cell 98, 377-388.

    Article  CAS  PubMed  Google Scholar 

  • Loi, M. 2006. Lowe syndrome. Orphanet J. Rare Dis. 1: 16.

    Article  PubMed  Google Scholar 

  • Lowe, C. U., Terrey, M. and MacLachan, E. A. 1952. Organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. Am. J. Dis. Child. 83, 164-184.

    CAS  Google Scholar 

  • Mueller, O. Y., Hartsfield, J. K., Hughes, E., Crolla, J. A., Dubowitz, V. and Bobrow, M. 1985. A balanced de-novo X/autosome translocation in a girl with manifestation of Lowe syndrome. Am. J. Med. Genet. 23, 837-847.

    Google Scholar 

  • Nussbaum, R. L., Orrison, B. M., Janne, P. A., Charnas, L. and Chinault, A. C. 1997. Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum. Genet. 99, 145-150.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum, R. L. and Suchy, S. F. 2001. The oculocerebrorenal syndrome of Lowe (Lowe syndrome). In Metabolic and Molecular Basis of Inherited Disease, vol. 252, 8th edition. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle (Editors). McGraw-Hill, New York. pp. 6257-6266.

    Google Scholar 

  • Olivos-Glander, I. M., Janne, P. A. and Nussbaum, R. L. 1995. The oculocerebrorenal syndrome gene product is a 105-kD protein localized in the Golgi complex. Am. J. Hum. Genet. 57, 817-823.

    CAS  PubMed  Google Scholar 

  • van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J. and Jalink, K. 2005. PIP2 signaling in lipid domains: A critical re-evaluation. EMBO J. 24, 1664-1673.

    Article  CAS  PubMed  Google Scholar 

  • Schafer, D. A., Jennings, P. B. and Cooper, J. A. 1996. Dynamics of capping proteins and actin assembly in vitro: Uncapping barbed ends by phosphoinositides. J. Cell Biol. 135, 169-179.

    Article  CAS  PubMed  Google Scholar 

  • Stauffer, T. P., Ahn, S. and Meyer, T. 1998. Receptor-induced transient reduction in plasma membrane PtdIn(4,5)P2 concentration monitored in living cells. Curr. Biol. 8,343-346.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, L. R., Jackson, T. R. and Hawkins, P. T. 1993. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: A new intracellular signalling system? Biochim. Biophys. Acta 1179, 27-75.

    Article  CAS  PubMed  Google Scholar 

  • Suchy, S. F. and Nussbaum, R. L. 2002. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420-1427.

    Article  CAS  PubMed  Google Scholar 

  • Suchy, S. F., Olivos-Glander, I. M. and Nussbaum, R. L. 1995. Lowe syndrome, a deficiency of a phosphatidylinositol 4,5 bisphosphate 5 phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4, 2245-2250.

    Article  CAS  PubMed  Google Scholar 

  • Yin, H. L. and Janmey, P. A. 2003. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761-789.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

dos Remedios, C.G., Nosworthy, N.J. (2008). The Role of PIP2 in Actin, Actin-Binding Proteins and Disease. In: dos Remedios, C.G., Chhabra, D. (eds) Actin-Binding Proteins and Disease. Protein Reviews, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71749-4_12

Download citation

Publish with us

Policies and ethics