Skip to main content
  • 1122 Accesses

Future generations of integrated circuit technologies are trending toward higher speeds and densities. The total capacitive load associated with the internal circuitry has been increasing for several generations of high complexity integrated circuits [165], [166]. As the operating frequencies increase, the average on-chip current required to charge and discharge these capacitances also has increased, while the switching time has decreased. As a result, a large change in the total on-chip current can occur within a brief period of time.

Due to the high slew rate of the currents flowing through the bonding wires, package pins, and on-chip interconnects, the ground and supply voltage can fluctuate (or bounce) due to the parasitic impedances associated with the package-to-chip and on-chip interconnects. These voltage fluctuations on the supply and ground rails, called ground bounce, ∆I noise, or simultaneous switching noise (SSN) [284], are larger since a significant number of the I/O drivers and internal logic circuitry switch close in time to the clock edges. SSN generates glitches on the ground and power supply wires, decreasing the effective current drive of the circuits, producing output signal distortion, thereby reducing the noise margins of a system. As a result, the performance and functionality of the system can be severely compromised.

In the past, research on SSN has concentrated on transient power noise caused by current flowing through the inductive bonding wires at the I/O buffers. SSN originating from the internal circuitry, however, has become an important issue in the design of VDSM high performance ICs, such as systems-on-chip, mixed-signal circuits, and microprocessors. This increased importance is due to fast clock rates, large on-chip switching activities and currents, and increased on-chip inductance, all of which are increasingly common characteristics of VDSM synchronous ICs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

(2008). On-chip Power Noise Reduction Techniques in High Performance ICs. In: Power Distribution Networks with On-Chip Decoupling Capacitors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71601-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71601-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71600-8

  • Online ISBN: 978-0-387-71601-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics