On-Chip Power Distribution Grids with Multiple Supply Voltages

With the on-going miniaturization of integrated circuit feature size, the design of power and ground distribution networks has become a challenging task. With technology scaling, the requirements placed on the on-chip power distribution system have significantly increased. These challenges arise from shorter rise/fall times, lower noise margins, higher currents, and increased current densities. Furthermore, the power supply voltage has decreased to lower dynamic power dissipation. A greater number of transistors increases the total current drawn from the power supply. Simultaneously, the higher switching speed of a greater number of smaller transistors produces faster and larger current transients in the power distribution network [22].


Power Grid Mutual Inductance Power Delivery Loop Inductance Ground Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science + Business Media, LLC 2008

Personalised recommendations