Advertisement

γ-Secretase as a Target for Alzheimer's Disease

  • Michael S. Wolfe

The two characteristic pathological features of Alzheimer’s disease (AD) found in the brain are extracellular amyloid plaques and intraneuronal fibrillary tangles, the former being composed primarily of the 4-kDa amyloid β-peptide (Aβ) and the latter containing paired helical filaments of the microtubule-associated protein tau (Hardy, Duff, Hardy, Perez-Tur, & Hutton, 1998). While dominant mutations in the tau gene can cause other forms of dementia (Lee, Goedert, & Trojanowski, 2001), missense mutations in the Aβ precursor protein (APP) alter Aβ production and cause familial early onset AD (Selkoe, 2001).

Keywords

Aspartyl Protease Signal Peptide Peptidase Sulindac Sulfide Nature Cell Biology Multipass Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.J., Holtz, G., Baskin, P. P., Turner, M., Rowe, B., Wang, B., et al. (2005). Reductions in beta-amyloid concentrations invivo by the gamma-secretase inhibitors BMS-289948 and BMS-299897. Biochemical Pharmacology, 69, 689–698.CrossRefPubMedGoogle Scholar
  2. Barten, D. M., Guss, V. L., Corsa, J.A., Loo, A., Hansel, S. B., Zheng, M., et al. (2004). Dynamics of beta-Amyloid Reductions in Brain, Cerebrospinal Fluid and Plasma of beta-Amyloid Precursor Protein Transgenic Mice Treated with a gamma-Secretase Inhibitor. The Journal of Pharmacology and Experimental Therapeutics, 27, 27.Google Scholar
  3. Beher, D., Clarke, E. E., Wrigley, J.D., Martin, A. C., Nadin, A., Churcher, I., et al. (2004). Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. The Journal of Biological Chemistry, 279, 43419–43426.CrossRefPubMedGoogle Scholar
  4. Best, J.D., Jay, M. T., Out, F., Ma, J., Nadin, A., Ellis, S., et al. (2005). Quantitative measurement of changes in amyloid-beta(40) in the rat brain and cerebrospinal fluid following treatment with the gamma-secretase inhibitor LY-411575 [N2-[(2S)-2-(3, 5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6, 7-dihydro-5H-dibenzo[b, d]azepin-7-yl]-L-alaninamide]. The Journal of Pharmacology and Experimental Therapeutics, 313, 902–908.CrossRefPubMedGoogle Scholar
  5. Bihel, F., Das, C., Bowman, M. J., & Wolfe, M. S. (2004). Discovery of a subnanomolar helical D-tridecapeptide inhibitor of γ-secretase. Journal of Medicinal Chemistry, 47, 3931–3933.CrossRefPubMedGoogle Scholar
  6. Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., et al. (1998). The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. The Journal of Biological Chemistry, 273, 3205–3211.CrossRefPubMedGoogle Scholar
  7. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., et al. (1997). Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Medicine, 3, 67–72.CrossRefPubMedGoogle Scholar
  8. Das, C., Berezovska, O., Diehl, T. S., Genet, C., Buldyrev, I., Tsai, J.Y., et al. (2003). Designed helical peptides inhibit an intramembrane protease. Journal of the American Chemical Society, 125, 11794–11795.CrossRefPubMedGoogle Scholar
  9. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., et al. (1999). A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature, 398, 518–522.CrossRefPubMedGoogle Scholar
  10. De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., et al. (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 391, 387–390.CrossRefPubMedGoogle Scholar
  11. Dovey, H. F., John, V., Anderson, J.P., Chen, L. Z., de Saint Andrieu, P., Fang, L. Y., et al. (2001). Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. Journal of Neurochemistry, 76, 173–181.CrossRefPubMedGoogle Scholar
  12. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-tur, J., et al. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710–713.CrossRefPubMedGoogle Scholar
  13. Edbauer, D., Winkler, E., Regula, J.T., Pesold, B., Steiner, H., & Haass, C. (2003). Reconstitution of gamma-secretase activity. Nature Cell Biology, 5, 486–488.CrossRefPubMedGoogle Scholar
  14. Eriksen, J.L., Sagi, S. A., Smith, T. E., Weggen, S., Das, P., McLendon, D. C., et al. (2003). NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 invivo. The Journal of Clinical Investigation, 112, 440–449.PubMedGoogle Scholar
  15. Esler, W. P., Kimberly, W. T., Ostaszewski, B. L., Diehl, T. S., Moore, C. L., Tsai, J.Y., et al. (2000). Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biology, 2, 428–434.CrossRefPubMedGoogle Scholar
  16. Esler, W. P., Kimberly, W. T., Ostaszewski, B. L., Ye, W., Diehl, T. S., Selkoe, D. J., et al. (2002). Activity-dependent isolation of the presenilin/γ-secretase complex reveals nicastrin and a g substrate. Proceedings of the National Academy of Sciences of the United States of America, 99, 2720–2725.CrossRefPubMedGoogle Scholar
  17. Fraering, P. C., LaVoie, M. J., Ye, W., Ostaszewski, B. L., Kimberly, W. T., Selkoe, D. J., et al. (2004a). Detergent-dependent dissociation of active gamma-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex. Biochemistry, 43, 323–333.CrossRefPubMedGoogle Scholar
  18. Fraering, P. C., Ye, W., Strub, J.M., Dolios, G., LaVoie, M. J., Ostaszewski, B. L., et al. (2004b). Purification and Characterization of the Human gamma-Secretase Complex. Biochemistry, 43, 9774–9789.CrossRefPubMedGoogle Scholar
  19. Fraering, P. C., Ye, W., Lavoie, M. J., Ostaszewski, B. L., Selkoe, D. J., & Wolfe, M. S. (2005). gamma -Secretase substrate selectivity can be modulated directly via interaction with a nucleotide binding site. The Journal of Biological Chemistry, 280, 41987–41996.CrossRefPubMedGoogle Scholar
  20. Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., et al. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 3, 85–97.CrossRefPubMedGoogle Scholar
  21. Goutte, C., Tsunozaki, M., Hale, V. A., & Priess, J.R. (2002). APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proceedings of the National Academy of Sciences of the United States of America, 99, 775–779.CrossRefPubMedGoogle Scholar
  22. Hardy, J., Duff, K., Hardy, K. G., Perez-Tur, J., & Hutton, M. (1998). Genetic dissection of Alzheimer's disease and related dementias: Amyloid and its relationship to tau. Nature Neuroscience, 1, 355–358.CrossRefPubMedGoogle Scholar
  23. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.CrossRefPubMedGoogle Scholar
  24. Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., & De Strooper, B. (2000). Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biology, 2, 461–462.CrossRefPubMedGoogle Scholar
  25. Hu, Y., & Fortini, M. E. (2003). Different cofactor activities in gamma-secretase assembly: Evidence for a nicastrin-Aph-1 subcomplex. The Journal of Cell Biology, 161, 685–690.CrossRefPubMedGoogle Scholar
  26. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: Evidence that an initially deposited species is A beta 42(43). Neuron, 13, 45–53.CrossRefPubMedGoogle Scholar
  27. Jarrett, J.T., Berger, E. P., & Lansbury, P. T., Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry, 32, 4693–4697.CrossRefPubMedGoogle Scholar
  28. Kim, S. H., & Sisodia, S. S. (2005). Evidence that the “NF” motif in transmembrane domain 4 of presenilin 1 is critical for binding with PEN-2. The Journal of Biological Chemistry, 280, 41953–41966.CrossRefPubMedGoogle Scholar
  29. Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). γ-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proceedings of the National Academy of Sciences of the United States of America, 100, 6382–6387.CrossRefPubMedGoogle Scholar
  30. Kopan, R., & Ilagan, M. X. (2004). Gamma-secretase: Proteasome of the membrane? Nature Reviews. Molecular Cell Biology, 5, 499–504.CrossRefPubMedGoogle Scholar
  31. Kornilova, A. Y., Bihel, F., Das, C., & Wolfe, M. S. (2005). The initial substrate-binding site of gamma-secretase is located on presenilin near the active site. Proceedings of the National Academy of Sciences of the United States of America, 102, 3230–3235.CrossRefPubMedGoogle Scholar
  32. Kornilova, A. Y., Das, C., & Wolfe, M. S. (2003). Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications. The Journal of Biological Chemistry, 278, 16470–16473.CrossRefPubMedGoogle Scholar
  33. Lanz, T. A., Himes, C. S., Pallante, G., Adams, L., Yamazaki, S., Amore, B., et al. (2003). The gamma-secretase inhibitor N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels invivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. The Journal of Pharmacology and Experimental Therapeutics, 305, 864–871.CrossRefPubMedGoogle Scholar
  34. LaVoie, M. J., Fraering, P. C., Ostaszewski, B. L., Ye, W., Kimberly, W. T., Wolfe, M. S., et al. (2003). Assembly of the {gamma}-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and Nicastrin. The Journal of Biological Chemistry, 278, 37213–37222.CrossRefPubMedGoogle Scholar
  35. Lee, V. M., Goedert, M., & Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.CrossRefPubMedGoogle Scholar
  36. Lemere, C. A., Lopera, F., Kosik, K. S., Lendon, C. L., Ossa, J., Saido, T. C., et al. (1996). The E280A presenilin 1 Alzheimer mutation produces increased A-beta 42 deposition and severe cerebellar pathology. Nature Medicine, 2, 1146–1150.CrossRefPubMedGoogle Scholar
  37. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 269, 973–977.CrossRefPubMedGoogle Scholar
  38. Li, Y. M., Xu, M., Lai, M. T., Huang, Q., Castro, J.L., DiMuzio-Mower, J., et al. (2000). Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature, 405, 689–694.CrossRefPubMedGoogle Scholar
  39. Morais, V. A., Crystal, A. S., Pijak, D. S., Carlin, D., Costa, J., Lee, V. M., et al. (2003). The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the gamma-secretase complex. The Journal of Biological Chemistry, 278, 43284–43291.CrossRefPubMedGoogle Scholar
  40. Netzer, W. J., Dou, F., Cai, D., Veach, D., Jean, S., Li, Y., et al. (2003). Gleevec inhibits beta-amyloid production but not Notch cleavage. Proceedings of the National Academy of Sciences of the United States of America, 100, 12444–12449.CrossRefPubMedGoogle Scholar
  41. Okochi, M., Fukumori, A., Jiang, J., Itoh, N., Kimura, R., Steiner, H., et al. (2006). Secretion of the Notch-1 Abeta-like peptide during Notch signaling. The Journal of Biological Chemistry, 281, 7890–7898.CrossRefPubMedGoogle Scholar
  42. Ratovitski, T., Slunt, H. H., Thinakaran, G., Price, D. L., Sisodia, S. S., & Borchelt, D. R. (1997). Endoproteolytic processing and stabilization of wild-type and mutant presenilin. The Journal of Biological Chemistry, 272, 24536–24541.CrossRefPubMedGoogle Scholar
  43. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., et al. (1995). Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 376, 775–778.CrossRefPubMedGoogle Scholar
  44. Sato, T., Nyborg, A. C., Iwata, N., Diehl, T. S., Saido, T. C., Golde, T. E., et al. (2006). Signal peptide peptidase: Biochemical properties and modulation by nonsteroidal anti-inflammatory drugs. Biochemistry, 45, 8649–8656.CrossRefPubMedGoogle Scholar
  45. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased invivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Medicine, 2, 864–870.CrossRefPubMedGoogle Scholar
  46. Schroeter, E. H., Kisslinger, J.A., & Kopan, R. (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393, 382–386.CrossRefPubMedGoogle Scholar
  47. Searfoss, G. H., Jordan, W. H., Calligaro, D. O., Galbreath, E. J., Schirtzinger, L. M., Berridge, B. R., et al. (2003). Adipsin: A biomarker of gastrointestinal toxicity mediated by a functional gamma secretase inhibitor. The Journal of Biological Chemistry, 29, 29.Google Scholar
  48. Selkoe, D. J. (2001). Alzheimer's disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.PubMedGoogle Scholar
  49. Selkoe, D. J., & Kopan, R. (2003). Notch and Presenilin: Regulated intramembrane proteolysis links development and degeneration. Annual Review of Neuroscience, 26, 565–597.CrossRefPubMedGoogle Scholar
  50. Shah, S., Lee, S. F., Tabuchi, K., Hao, Y. H., Yu, C., LaPlant, Q., et al. (2005). Nicastrin functions as a gamma-secretase-substrate receptor. Cell, 122, 435–447.CrossRefPubMedGoogle Scholar
  51. Shen, J., Bronson, R. T., Chen, D. F., Xia, W., Selkoe, D. J., & Tonegawa, S. (1997). Skelet al and CNS defects in Presenilin-1-deficient mice. Cell, 89, 629–639.CrossRefPubMedGoogle Scholar
  52. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375, 754–760.CrossRefPubMedGoogle Scholar
  53. Shirotani, K., Edbauer, D., Kostka, M., Steiner, H., & Haass, C. (2004). Immature nicastrin stabilizes APH-1 independent of PEN-2 and presenilin: Identification of nicastrin mutants that selectively interact with APH-1. Journal of Neurochemistry, 89, 1520–1527.CrossRefPubMedGoogle Scholar
  54. Siemers, E., Skinner, M., Dean, R. A., Gonzales, C., Satterwhite, J., Farlow, M., et al. (2005). Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clinical Neuropharmacology, 28, 126–132.CrossRefPubMedGoogle Scholar
  55. Siemers, E. R., Quinn, J.F., Kaye, J., Farlow, M. R., Porsteinsson, A., Tariot, P., et al. (2006). Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology, 66, 602–604.CrossRefPubMedGoogle Scholar
  56. Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., et al. (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature, 422, 438–441.CrossRefPubMedGoogle Scholar
  57. Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., et al. (1996). Endoproteolysis of presenilin 1 and accumulation of processed derivatives invivo. Neuron, 17, 181–190.CrossRefPubMedGoogle Scholar
  58. Watanabe, N., Tomita, T., Sato, C., Kitamura, T., Morohashi, Y., & Iwatsubo, T. (2005). Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. The Journal of Biological Chemistry, 280, 41967–41975.CrossRefPubMedGoogle Scholar
  59. Weggen, S., Eriksen, J.L., Das, P., Sagi, S. A., Wang, R., Pietrzik, C. U., et al. (2001). A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 414, 212–216.CrossRefPubMedGoogle Scholar
  60. Weggen, S., Eriksen, J.L., Sagi, S. A., Pietrzik, C. U., Ozols, V., Fauq, A., et al. (2003). Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. The Journal of Biological Chemistry, 278, 31831–31837.CrossRefPubMedGoogle Scholar
  61. Weihofen, A., Binns, K., Lemberg, M. K., Ashman, K., & Martoglio, B. (2002). Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science, 296, 2215–2218.CrossRefPubMedGoogle Scholar
  62. Wolfe, M. S., De Los Angeles, J., Miller, D. D., Xia, W., & Selkoe, D. J. (1999). Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry, 38, 11223–11230.CrossRefPubMedGoogle Scholar
  63. Wolfe, M. S., Xia, W., Moore, C. L., Leatherwood, D. D., Ostaszewski, B., Donkor, I. O., et al. (1999). Peptidomimetic probes and molecular modeling suggest Alzheimer's γ-secretases are intramembrane-cleaving aspartyl proteases. Biochemistry, 38, 4720–4727.CrossRefPubMedGoogle Scholar
  64. Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., & Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature, 398, 513–517.CrossRefPubMedGoogle Scholar
  65. Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., et al. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411, 575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. The Journal of Biological Chemistry, 279, 12876–12882.CrossRefPubMedGoogle Scholar
  66. Wong, P. C., Zheng, H., Chen, H., Becher, M. W., Sirinathsinghji, D. J., Trumbauer, M. E., et al. (1997). Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature, 387, 288–292.CrossRefPubMedGoogle Scholar
  67. Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., et al. (2000). Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature, 407, 48–54.CrossRefPubMedGoogle Scholar
  68. Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A., et al. (2000). Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nature Cell Biology, 2, 463–465.CrossRefPubMedGoogle Scholar
  69. Zhou, S., Zhou, H., Walian, P. J., & Jap, B. K. (2005). CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer's disease amyloid beta-peptide production. Proceedings of the National Academy of Sciences of the United States of America, 102, 7499–7504. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael S. Wolfe
    • 1
  1. 1.Center for Neurologic DiseasesHarvard Medical School and Brigham and Women's HospitalBostonUSA

Personalised recommendations