The Rationale for Glutamatergic Therapy in Alzheimer's Disease

  • Paul T. Francis

Glutamate is the primary excitatory neurotransmitter of the central nervous system and is used by approximately two-thirds of synapses in the neocortex and hippocampus while acetylcholine is found in perhaps 5% such synapses (Danbolt, 2001; Fonnum, 1984).


NMDA Receptor AMPA Receptor Glutamate Transporter Glutamatergic System Synapse Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bales, K. R., Tzavara, E. T., Wu, S., Wade, M. R., Bymaster, F. P., Paul, S. M., et al. (2006). Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A{beta} antibody. Journal of Clinical Investigation, 116, 825–832.CrossRefPubMedGoogle Scholar
  2. Baudry, M., & Lynch, G. (2001). Remembrance of arguments past: How well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiology of Learning and Memory, 76, 284–297.CrossRefPubMedGoogle Scholar
  3. Beckstrom, H., Julsrud, L., Haugeto, O., Dewar, D., Graham, D. I., Lehre, K. P., et al. (1999). Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer's disease. Journal of Neuroscience Research, 55, 218–229.CrossRefPubMedGoogle Scholar
  4. Bell, K. F., Ducatenzeiler, A., Ribeiro-da-Silva, A., Duff, K., Bennett, D. A., & Claudio, C. A. (2006). The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiology of Aging, 27, 1644–1657.CrossRefPubMedGoogle Scholar
  5. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., & Edwards, R. H. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science, 289, 957–960.CrossRefPubMedGoogle Scholar
  6. Caccamo, A., Oddo, S., Billings, L. M., Green, K. N., Martinez-Coria, H., Fisher, A., et al. (2006). M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron, 49, 671–682.CrossRefPubMedGoogle Scholar
  7. Castellano et al. (1992). NMDA receptors and memory: Evidence from pharmacological and correlational studies. In A. P. Kozikowski (Ed.), Neurobiology of the NMDA receptor from chemistry to the clinic. New York: VCH.Google Scholar
  8. Chee, F., Mudher, A., Newman, T. A., Cuttle, M., Lovestone, S., & Shepherd, D. (2006). Overexpression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Biochemical Society Transactions, 34, 88–90.CrossRefPubMedGoogle Scholar
  9. Chen, H. S., Pellegrini, J. W., Aggarwal, S. K., Lei, S. Z., Warach, S., Jensen, F. E., et al. (1992). Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. Journal of Neuroscience, 12, 4427–4436.PubMedGoogle Scholar
  10. Collingridge, G. L. (1987). NMDA receptors–their role in long-term potentiation. Trends in Neurosciences, 10, 288–293.CrossRefGoogle Scholar
  11. Collingridge, G. L., & Singer, W. (1990). Excitatory amino acid receptors and synaptic plasticity. In G. Collingridge & D. Lodge (Eds.), TIPS special report: Pharamacology of excitatory amino acids (pp. 42–53). Cambridge: Elsevier.Google Scholar
  12. Danbolt, N. C. (2001). Glutamate uptake. Progress in Neurobiology, 65, 1–105.CrossRefPubMedGoogle Scholar
  13. Danysz, W., Parsons, C. G., & Quack, G. (2000). NMDA channel blockers: Memantine and amino-aklylcyclohexanes–in vivo characterization. Amino Acids, 19, 167–172.CrossRefPubMedGoogle Scholar
  14. DeKosky, S. T., & Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. Annals of Neurology, 27, 457–464.CrossRefPubMedGoogle Scholar
  15. Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain. Journal of Neurochemistry, 42, 1–11.CrossRefPubMedGoogle Scholar
  16. Francis, P. T. (2003). Glutamatergic systems in Alzheimer's disease. International Journal of Geriatric Psychiatry, 18, S15–S21.CrossRefPubMedGoogle Scholar
  17. Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: A review of progress. Journal of Neurology Neurosurgery and Psychiatry, 66, 137–147.CrossRefGoogle Scholar
  18. Francis, P. T., Sims, N. R., Procter, A. W., & Bowen, D. M. (1993). Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: Investigative and therapeutic perspectives. Journal of Neurochemistry, 60, 1589–1604.CrossRefPubMedGoogle Scholar
  19. Fremeau, R. T., Jr., Troyer, M. D., Pahner, I., Nygaard, G. O., Tran, C. H., Reimer, R. J., et al. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron, 31, 247–260.CrossRefPubMedGoogle Scholar
  20. German, D. C., & Eisch, A. J. (2004). Mouse models of Alzheimer's disease: Insight into treatment. Reviews in the Neurosciences, 15, 353–369.PubMedGoogle Scholar
  21. Greenamyre, J. T., Maragos, W. F., Albin, R. L., Penney, J. B., & Young, A. B. (1988). Glutamate transmission and excitotxicity in Alzheimer's disease. Progress in Neuropsychpharmacology, 12, 421–430.CrossRefGoogle Scholar
  22. Greenamyre, J. T., Penney, J. B., D'Amato, C. J., & Young, A. B. (1985). Alterations in L-glutamate binding in Alzheimer's and Huntingdon's diseases. Science, 227, 1496–1499.CrossRefPubMedGoogle Scholar
  23. Greenamyre, J. T., Penney, J. B., D'Amato, C. J., & Young, A. B. (1987). Dementia of the Alzheimer's type: Changes in hippocampal L- [3H]glutamate binding. Journal of Neurochemistry, 48, 543–551.CrossRefPubMedGoogle Scholar
  24. Handelmann, G. E., Nevins, M. E., Mueller, L. L., Arnolde, S. M., & Cordi, A. A. (1989). Milacemide, a glycine prodrug, enhances performance of learning tasks in normal and amnesic rodents. Pharmacology Biochemistry and Behaviour, 34, 823–828.CrossRefGoogle Scholar
  25. Hartmann, J., Erb, C., Ebert, U., Baumann, K. H., Popp, A., Konig, G., et al. (2004). Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice. Neuroscience, 125, 1009–1017.CrossRefPubMedGoogle Scholar
  26. Herzog, E., Bellenchi, G. C., Gras, C., Bernard, V., Ravassard, P., Bedet, C., et al. (2001). The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. Journal of Neuroscience, 21, RC181.PubMedGoogle Scholar
  27. Ikonomovic, M. D., & Armstrong, D. M. (1996). Distribution of AMPA receptor subunits in the nucleus basalis of Meynert in aged humans: Implications for selective neuronal degeneration. Brain Research, 716, 229–232.CrossRefPubMedGoogle Scholar
  28. Johnson, S. A., & Simmon, V. F. (2002). Randomized, double-blind, placebo-controlled international clinical trial of the Ampakine CX516 in elderly participants with mild cognitive impairment: A progress report. Journal of Molecular Neuroscience, 19, 197–200.CrossRefPubMedGoogle Scholar
  29. Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., et al. (1997). 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80, 685–696.CrossRefPubMedGoogle Scholar
  30. Kirvell, S. L., Esiri, M. M., & Francis, P. T. (2006). Down regulation of vesicular glutamate transporters precede cell loss and pathology in Alzheimer's disease. Journal of Neurochemistry, 98, 939–950.CrossRefPubMedGoogle Scholar
  31. Kirvell, S. L., Fremeau, R. T., Jr., & Francis, P. T. (2002). Vesicular glutamate transporter 1 in Alzheimer's disease. 2002 Society for Neuroscience Abstracts Viewer/planner, Washington, DC Program No. 785.15.Google Scholar
  32. Lee, R. K. K., Wurtman, R. J., Cox, A. J., & Nitsch, R. M. (1995). Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 92, 8083–8087.CrossRefPubMedGoogle Scholar
  33. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews., 79, 1431–1568.PubMedGoogle Scholar
  34. Mann, D. M., Neary, D., Yates, P. O., Lincoln, J., Snowden, J. S., & Stanworth, P. (1981). Neurofibrillary pathology and protein synthetic capability in nerve cells in Alzheimer's disease. Neuropathology and Applied Neurobiology, 7, 37–47.CrossRefPubMedGoogle Scholar
  35. Matthews, K. L., Heslop, K. E., Chapman, P. F., Hathway, G. J., Kendrick, K. M., & Francis, P. T. (2001). Neurochemical characterisation of TG2576 mice. Society for Neuroscience Abstracts 27, 965.5.Google Scholar
  36. Monahan, J. B., Handelmann, G. E., Hood, W. F., & Cordi, A. A. (1989). D-Cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning task in rats. Pharmacology Biochemistry and Behaviour, 34, 649–653.CrossRefGoogle Scholar
  37. Morris, R. G. M., Anderson, E., & Lynch, G. S. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.CrossRefPubMedGoogle Scholar
  38. Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.CrossRefPubMedGoogle Scholar
  39. Mudher, A., Shepherd, D., Newman, T. A., Mildren, P., Jukes, J. P., Squire, A., et al. (2004). GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Molecular Psychiatry, 9, 522–530.CrossRefPubMedGoogle Scholar
  40. Myhrer, T., & Paulsen, R. E. (1997). Infusion of D-cycloserine into temporal-hippocampal areas and restoration of mnemonic function in rats with disrupted glutamatergic temporal systems. European Journal of Pharmacology, 328, 1–7.CrossRefPubMedGoogle Scholar
  41. Najlerahim, A., & Bowen, D. M. (1988b). Biochemical measurements in Alzheimer's disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochemical Journal, 251, 305–308.PubMedGoogle Scholar
  42. Najlerahim, A., & Bowen, D. M. (1988a). Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathologica, 75, 509–512.CrossRefPubMedGoogle Scholar
  43. Neary, D., Snowden, J. S., Mann, D. M., Bowen, D. M., Sims, N. R., Northen, B., et al. (1986). Alzheimer's disease: A correlative study. Journal of Neurology Neurosurgery and Psychiatry, 49, 229–237.CrossRefGoogle Scholar
  44. Procter, A. W., Lowe, S. L., Palmer, A. M., Francis, P. T., Esiri, M. M., Stratmann, G. C., et al. (1988). Topographical distribution of neurochemical changes in Alzheimer's disease. Journal of the Neurological Sciences, 84, 125–140.CrossRefPubMedGoogle Scholar
  45. Procter, A. W., Palmer, A. M., Francis, P. T., Lowe, S. L., Neary, D., Murphy, E., et al. (1988). Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. Journal of Neurochemistry, 50, 790–802.CrossRefPubMedGoogle Scholar
  46. Procter, A. W., Wong, E. H., Stratmann, G. C., Lowe, S. L., & Bowen, D. M. (1989). Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease. Journal of Neurochemistry, 53, 698–704.CrossRefPubMedGoogle Scholar
  47. Reisberg, B., Doody, R., Stoffler, A., Schmitt, F., Ferris, S., & Mobius, H. J. (2003). Memantine in moderate-to-severe Alzheimer's disease. New England Journal of Medicine, 348, 1333–1341.CrossRefPubMedGoogle Scholar
  48. Sadot, E., Gurwitz, D., Barg, J., Behar, L., Ginzburg, I., & Fisher, A. (1996). Activation of m1 muscarinic acetylcholine receptor regulates τ phosphorylation in transfected PC12 cells. Journal of Neurochemistry, 66, 877–880.PubMedCrossRefGoogle Scholar
  49. Schwartz, B. L., Hashtroudi, S., Herting, R. L., Schwartz, P., & Deutsch, S. I. (1996). D-cycloserine enhances implicit memory in alzheimer patients. Neurology, 46, 420–424.PubMedGoogle Scholar
  50. Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience., 8, 1051–1058.CrossRefPubMedGoogle Scholar
  51. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30, 572–580.CrossRefPubMedGoogle Scholar
  52. Westphalen, R. I., Scott, H. L., & Dodd, P. R. (2003). Synaptic vesicle transport and synaptic membrane transporter sites in excitatory amino acid nerve terminals in Alzheimer disease. Journal of Neural Transmission., 110, 1013–1027.CrossRefPubMedGoogle Scholar
  53. Wong, T. P., Debeir, T., Duff, K., & Cuello, A. C. (1999). Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin- l and amyloid precursor protein transgenes. Journal of Neuroscience, 19, 2706–2716.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paul T. Francis
    • 1
  1. 1.Wolfson Centre for Age-Related DiseasesKing's College LondonUK

Personalised recommendations