Potential Applications of Glycosaminoglycan-Related Compounds in Alzheimer's Disease

  • Céline Morissette
  • Diane Lacombe
  • Xianqi Kong
  • Ahmed Aman
  • Pascale Krzywkowski
  • Lioudmila Rodionova
  • Mounia Azzi
  • Daniel Delorme
  • Barry D. Greenberg

Amyloid refers to extracellular proteinaceous fibrillar tissue deposits having a unique set of morphologic, tinctorial, ultrastructural, and protein-folding characteristics (Kisilevsky, 1996). Up to now, more than 25 amyloid proteins or peptides have been identified, each being associated with one type of amyloid deposit (for a review see: Westermark et al., 2005).


Heparan Sulfate Amyloid Precursor Protein Senile Plaque Cerebral Amyloid Angiopathy Dermatan Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen, P. S. (2005). The development of anti-amyloid therapy for Alzheimer's disease: From secretase modulators to polymerisation inhibitors. CNS Drugs, 19, 989–996.PubMedGoogle Scholar
  2. Aisen, P. S., Gauthier, S., Vellas, B., Briand, R., Saumier, D., Laurin, J., et al. (2006). Alzhemed: A potential treatment for Alzheimer's disease (AD). Current Alzheimer Research (in press).Google Scholar
  3. Aisen, P. A., Mehran, M., Poole, R., Lavoie, I., Gervais, F., Briand, R., et al. (2004).01–05-06 Clinical data on Alzhemed after 12 months of treatment in patients with mild to moderate Alzheimer's disease. Neurobiology of Aging, 25, Supplement 2, S20.Google Scholar
  4. Aisen, P. S., Saumier, D., Briand, R., Laurin, J., Gervais, F., Tremblay, P., et al. (2006). A phase II study targeting amyloid β with 3APS in mild-to-moderate Alzheimer's disease. Neurology, 67, 1757–1763.PubMedGoogle Scholar
  5. Ancsin, J. B. (2003). Amyloidogenesis: Historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid, 10, 67–79.PubMedGoogle Scholar
  6. Bame, K. J., Danda, J., Hassall, A., & Tumova, S. (1997). Aβ(1–40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer's disease. The Journal of Biological Chemistry, 272, 17005–17011.PubMedGoogle Scholar
  7. Ban, T. A., Morey, L. C., Aguglia, E., Batista, R., Campanella, G., Conti, L., et al. (1991). Glycosaminoglycan polysulfate in the treatment of old age dementias. Progress in Neuro-psychopharmacology and Biological Psychiatry, 15, 323–342.PubMedGoogle Scholar
  8. Bergamaschini, L., Donarini, C., Rossi, E., De Luigi, A., Vergani, C., & de Simoni, M. G. (2002). Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiology of Aging, 23, 531–536.PubMedGoogle Scholar
  9. Bergamaschini, L., Rossi, E., Storini, C., Pizzimenti, S., Distaso, M., Perego, C., et al. (2004). Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. The Journal of Neuroscience, 24, 4181–4186.PubMedGoogle Scholar
  10. Berkin, A., Szarek, W. A., & Kisilevsky, R. (2000). Synthesis of 4-deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose and their effects on cellular glycosaminoglycan biosynthesis. Carbohydrate Research, 326, 250–263.PubMedGoogle Scholar
  11. Berkin, A., Szarek, W. A., & Kisilevsky, R. (2002). Synthesis and biological evaluation of a radiolabeled analog of methyl 2-acetamido-2, 4-dideoxy-beta-D-xylo-hexopyranoside directed towards influencing cellular glycosaminoglycan biosynthesis. Carbohydrate Research, 337, 37–44.PubMedGoogle Scholar
  12. Berkin, A., Szarek, M. A., Plenkiewicz, J., Szarek, W. A., & Kisilevsky, R. (2000). Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis. Carbohydrate Research, 325, 30–45.PubMedGoogle Scholar
  13. Buée, L., Ding, W., Anderson, J. P., Narindrasorasak, S., Kisilevsky, R., Boyle, N. J., et al. (1993). Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Research, 627, 199–204.PubMedGoogle Scholar
  14. Capila, I., & Linhardt, R. J. (2002). Heparin-protein interactions. Angewandte Chemie (International Ed. in English), 41, 391–412.Google Scholar
  15. Castillo, G. M., Lukito, W., Wight, T. N., & Snow, A. D. (1999). The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. Journal of Neurochemistry, 72, 1681–1687.PubMedGoogle Scholar
  16. Castillo, G. M., Ngo, C., Cummings, J., Wight, T. N., & Snow, A. D. (1997). Perlecan binds to the β-amyloid proteins (Aβ) of Alzheimer's disease, accelerates Aβ fibril formation, and maintains Aβ fibril stability. Journal of Neurochemistry, 69, 2452–2465.PubMedGoogle Scholar
  17. Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. The Journal of Biological Chemistry, 276, 21562–21570.PubMedGoogle Scholar
  18. Clarris, H. J., Cappai, R., Heffernan, D., Beyreuther, K., Masters, C. L., & Small, D. H. (1997). Identification of heparin-binding domains in the amyloid precursor protein of Alzheimer's disease by deletion mutagenesis and peptide mapping. Journal of Neurochemistry, 68, 1164–1172.PubMedGoogle Scholar
  19. Conti, L., Re, F., Lazzerini, F., Morey, L. C., Ban, T. A., Santini, V., et al. (1989). Glycosaminoglycan polysulfate (Ateroid) in old-age dementias: Effects upon depressive symptomatology in geriatric patients. Progress in Neuro-psychopharmacology and Biological Psychiatry, 13, 977–981.PubMedGoogle Scholar
  20. Coombe, D. R., & Kett, W. C. (2005). Heparan sulfate-protein interactions: Therapeutic potential through structure-function insights. Cellular and Molecular Life Sciences, 62, 410–424.PubMedGoogle Scholar
  21. Cornelli, U. (1996). Non-anticoagulant actions of glycosaminoglycans (GAGs). The therapeutical approach to Alzheimer's disease. In J. Harenberg & B. Casu (Eds.), Nonanticoagulant actions of glycosaminoglycans (pp. 249–279). New York: Plenum Press.Google Scholar
  22. Cornelli, U., Hanin, I., Lorens, S., Fareed, J., Lee, J., Mervis, R., et al. (2002). Historical overview of glycosaminoglycans (GAGs) and their potential value in the treatment of Alzheimer's disease. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping and progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology, 51) (pp. 145–155). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  23. Cotman, S. L., Halfter, W., & Cole, G. J. (2000). Agrin binds to beta-amyloid (Abeta), accelerates Abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain. Molecular and Cellular Neurosciences, 15, 183–198.PubMedGoogle Scholar
  24. DeWitt, D. A., Silver, J., Canning, D. R., & Perry, G. (1993). Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer's disease. Experimental Neurology, 121, 149–152.PubMedGoogle Scholar
  25. Diaz-Nido, J., Wandosell, F., & Avila, J. (2002). Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides, 23, 1323–1332.PubMedGoogle Scholar
  26. Dudas, B., Cornelli, U., Lee, J. M., Hejna, M. J., Walzer, M., Lorens, S. A., et al. (2002). Oral and subcutaneous administration of the glycosaminoglycan C3 attenuates Abeta(25–35)-induced abnormal tau protein immunoreactivity in rat brain. Neurobiology of Aging, 23, 97–104.PubMedGoogle Scholar
  27. Dudas, B., Rose, M., Cornelli, U., & Hanin, I. (2005). Low molecular weight glycosaminoglycan C3 attenuates AF64A-stimulated, low-affinity nerve growth factor receptor-immunoreactive axonal varicosities in the rat septum. Brain Research, 1033, 34–40.PubMedGoogle Scholar
  28. Fraser, P. E., Darabie, A. A., & McLaurin, J. A. (2001). Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides. Implications for drug development. The Journal of Biological Chemistry, 276, 6412–6419.PubMedGoogle Scholar
  29. Fraser, P. E., Nguyen, J. T., Chin, D. T., & Kirschner, D. A. (1992). Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: Implications for amyloid fibril-proteoglycan interactions. Journal of Neurochemistry, 59, 1531–1540.PubMedGoogle Scholar
  30. Geerts, H. (2004). NC-531 (Neurochem). Current Opinion in Investigational Drugs, 5, 95–100.PubMedGoogle Scholar
  31. Gervais, F., Chalifour, R., Garceau, D., Kong, X., Laurin, J., McLaughlin, R., et al. (2001). Glycosaminoglycan mimetics: a therapeutic approach to cerebral amyloid angiopathy. Amyloid, 8, 28–35.PubMedGoogle Scholar
  32. Gervais, F., Garceau, D., Aisen, P. S., & Gauthier, S. (2006). Glycosaminoglycan mimetics in Alzheimer's disease. In S. Gauthier, P. Scheltens, & J. L. Cummings (Eds.), Alzheimer's disease and related disorders annual 5 (pp. 63–72). London: Taylor & Francis.Google Scholar
  33. Gervais, F., Morissette, C., & Kong, X. (2003). Proteoglycans and amyloidogenic proteins in peripheral amyloidosis. Current Medicinal Chemistry (IEMA), 3, 361–370.Google Scholar
  34. Gervais, F., Paquette, J., Morissette, C., Krzywkowski, P., Yu, M., Azzi, M., et al. (2007). Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiology of Aging, 28, 537–547.PubMedGoogle Scholar
  35. Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890.PubMedGoogle Scholar
  36. Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., & Crowther, R. A. (1996). Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature, 383, 550–553.PubMedGoogle Scholar
  37. Guo, X., Xin, X., Gan, L., Nie, Q., & Geng, M. (2006). Determination of the accessibility of acidic oligosaccharide sugar chain to blood-brain barrier using surface plasmon resonance. Biological & Pharmaceutical Bulletin, 29, 60–63.Google Scholar
  38. Gupta-Bansal, R., Frederickson, R. C. A., & Brunden, K. R. (1995). Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. The Journal of Biological Chemistry, 270, 18666–18671.PubMedGoogle Scholar
  39. Hanin, I., Dudas, B., Mervis, R. F., Cornelli, U., Lee, J. M., Lorens, S. A, et al. (2002). C3, a promising ultra low molecular weight glycosaminoglycan for the treatment of Alzheimer's disease. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping and progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology, 51) (pp. 171–176). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  40. Hasegawa, M., Crowther, R. A., Jakes, R., & Goedert, M. (1997). Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. The Journal of Biological Chemistry, 272, 33118–33124.PubMedGoogle Scholar
  41. van Horssen, J., Otte-Holler, I., David, G., Maat-Schieman, M. L., van den Heuvel, L. P., Wesseling, P., et al. (2001). Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathologica, 102, 604–614.PubMedGoogle Scholar
  42. van Horssen, J., Wesseling, P., van den Heuvel, L. P., De Waal, R. M., & Verbeek, M. M. (2003). Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurology, 2, 482–492.PubMedGoogle Scholar
  43. van Horssen, J., Wilhelmus, M. M., Heljasvaara, R., Pihlajaniemi, T., Wesseling, P., De Waal, R. M., et al. (2002). Collagen XVIII: A novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains. Brain Pathology, 12, 456–462.PubMedGoogle Scholar
  44. Hu, J., Geng, M., Li, J., Xin, X., Wang, J., Tang, M., et al. (2004). Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. Journal of Pharmacological Sciences, 95, 248–255.PubMedGoogle Scholar
  45. Iozzo, R. V. (1998). Matrix proteoglycans: From molecular design to cellular function. Annual Review of Biochemistry, 67, 609–652.PubMedGoogle Scholar
  46. Kisilevsky, R. (1996). Anti-amyloid drugs: Potential in the treatment of diseases associated with aging. Drugs Aging, 8, 75–83.PubMedGoogle Scholar
  47. Kisilevsky, R. (1997). Can deposition of amyloid be prevented in Alzheimer's disease? Annals of the New York Academy of Sciences, 856, 117–127.Google Scholar
  48. Kisilevsky, R., & Fraser, P. (1996). Proteoglycans and amyloid fibrillogenesis. In G. Bock & J. Goode (Eds.), The nature and origin of amyloid fibrils—No. 199 (pp. 58–67). Chichester: John Wiley & Sons, Inc.Google Scholar
  49. Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., & Szarek, W. A. (1995). Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: Implications for Alzheimer's disease. Nature Medicine, 1, 143–148.PubMedGoogle Scholar
  50. Kisilevsky, R., & Szarek, W. A. (2002). Novel glycosaminoglycan precursors as anti-amyloid agents part II. Journal of Molecular Neuroscience, 19, 45–50.PubMedGoogle Scholar
  51. Kisilevsky, R., Szarek, W. A., Ancsin, J., Bhat, S., Li, Z., & Marone, S. (2003). Novel glycosaminoglycan precursors as anti-amyloid agents, part III. Journal of Molecular Neuroscience, 20, 291–297.PubMedGoogle Scholar
  52. Kisilevsky, R., Szarek, W. A., Ancsin, J. B., Elimova, E., Marone, S., Bhat, S., et al. (2004). Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: Implications for the treatment of various amyloidoses. The American Journal of Pathology, 164, 2127–2137.PubMedGoogle Scholar
  53. Kisilevsky, R., Szarek, W. A., Ancsin, J., Vohra, R., Li, Z., & Marone, S. (2004). Novel glycosaminoglycan precursors as antiamyloid agents: Part IV. Journal of Molecular Neuroscience, 24, 167–172.PubMedGoogle Scholar
  54. Kjellen, L., & Lindahl, U. (1991). Proteoglycans: Structures and interactions. Annual Review of Biochemistry, 60, 443–475.PubMedGoogle Scholar
  55. Lammi, M. (2006). Proteoglycans. University of Kuipio, Department of Anatomy, Kuopio. ISI Current Web Contents TM, Accessed: May 25, 2006. http://www.uku.fi/laitokset/anat/PG/intro.htm.
  56. Lee, H. G., Castellani, R. J., Zhu, X., Perry, G., & Smith, M. A. (2005). Amyloid-beta in Alzheimer's disease: The horse or the cart? Pathogenic or protective? International Journal of Experimental Pathology, 86, 133–138.PubMedGoogle Scholar
  57. Leveugle, B., Ding, W., Durkin, J. T., Mistretta, S., Eisle, J., Matic, M., et al. (1997). Heparin promotes β-secretase cleavage of the Alzheimer's amyloid precursor protein. Neurochemistry International, 30, 543–548.PubMedGoogle Scholar
  58. Leveugle, B., Ding, W., Laurence, F., Dehouck, M. P., Scanameo, A., Cecchelli, R., et al. (1998). Heparin oligosaccharides that pass the blood-brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptide. Journal of Neurochemistry, 70, 736–744.PubMedCrossRefGoogle Scholar
  59. Leveugle, B., & Fillit, H. (1994). Proteoglycans and the acute-phase response in Alzheimer's disease brain. Molecular Neurobiology, 9, 25–32.PubMedGoogle Scholar
  60. Lindahl, B., Eriksson, L., Spillmann, D., Caterson, B., & Lindahl, U. (1996). Selective loss of cerebral keratan sulfate in Alzheimer's disease. The Journal of Biological Chemistry, 271, 16991–16994.PubMedGoogle Scholar
  61. Lindahl, U., & Roden, L. (1972). Carbohydrate-peptide linkages in proteoglycans of animal, plant and bacterial origin. In A. Gottschalk (Ed.), Glycoproteins: Their composition, structure and function (pp. 491–517). Amsterdam: Elsevier.Google Scholar
  62. Linhardt, R. J. (2003). 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: Structure and activity. Journal of Medicinal Chemistry, 46, 2551–2564.PubMedGoogle Scholar
  63. Lorens, S. A., Guschwan, M., Hata, N., van de Kar, L. D., Walenga, J. M., & Fareed, J. (1991). Behavioral, endocrine, and neurochemical effects of sulfomucopolysaccharide treatment in the aged Fischer 344 male rat. Seminars in Thrombosis and Hemostasis, 17, 164–173.PubMedGoogle Scholar
  64. Lorenzo, A., & Yankner, B. A. (1994). β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243–12247.PubMedGoogle Scholar
  65. Ma, Q., Dudas, B., Hejna, M., Cornelli, U., Lee, J. M., Lorens, S., et al. (2002). The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thrombosis Research, 105, 447–453.PubMedGoogle Scholar
  66. Maresh, G. A., Erezyilmaz, D., Murry, C. E., Nochlin, D., & Snow, A. D. (1996). Detection and quantitation of perlecan mRNA levels in Alzheimer's disease and normal aged hippocampus by competitive reverse transcription-polymerase chain reaction. Journal of Neurochemistry, 67, 1132–1144.PubMedCrossRefGoogle Scholar
  67. Mori, H., Takio, K., Ogawara, M., & Selkoe, D. J. (1992). Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. The Journal of Biological Chemistry, 267, 17082–17086.PubMedGoogle Scholar
  68. Narindrasorasak, S., Altman, R. A., Gonzalez-DeWhitt, P., Greenberg, B. D., & Kisilevsky, R. (1995). An interaction between basement membrane and Alzheimer amyloid precursor proteins suggests a role in the pathogenesis of Alzheimer's disease. Laboratory Investigation, 72, 272–282.PubMedGoogle Scholar
  69. Narindrasorasak, S., Lowery, D. E., Altman, R. A., Gonzalez-DeWhitt, P., Greenberg, B. D., & Kisilevsky, R. (1992). Characterization of high affinity binding between laminin and Alzheimer's disease amyloid precursor proteins. Laboratory Investigation, 67, 643–652.PubMedGoogle Scholar
  70. Narindrasorasak, S., Lowery, D., Gonzalez-DeWhitt, P. A., Poorman, R. A., Greenberg, B., & Kisilevsky, R. (1991). High affinity interactions between the Alzheimer's β-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. The Journal of Biological Chemistry, 266, 12878–12883.PubMedGoogle Scholar
  71. Noti, C., & Seeberger, P. H. (2005). Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Chemistry and Biology, 12, 731–756.PubMedGoogle Scholar
  72. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H., & LaFerla, F. M. (2004). Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 43, 321–332.PubMedGoogle Scholar
  73. Oohira, A., Katoh-Semba, R., Watanabe, E., & Matsui, F. (1994). Brain development and multiple molecular species of proteoglycan. Neuroscience Research, 20, 195–207.PubMedGoogle Scholar
  74. Parnetti, L., Ban, T. A., & Senin, U. (1995). Glycosaminoglycan polysulfate in primary degenerative dementia. Pilot study of biologic and clinical effects. Neuropsychobiology, 31, 76–80.PubMedGoogle Scholar
  75. Paudel, H. K., & Li, W. (1999). Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. The Journal of Biological Chemistry, 274, 8029–8038.PubMedGoogle Scholar
  76. Perry, G., Siedlak, S. L., Richey, P., Kawai, M., Cras, P., Kalaria, R. N., et al. (1991). Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer's disease. The Journal of Neuroscience, 11, 3679–3683.PubMedGoogle Scholar
  77. Piccini, A., Russo, C., Gliozzi, A., Relini, A., Vitali, A., Borghi, R., et al. (2005). Beta-amyloid is different in normal aging and in Alzheimer disease. The Journal of Biological Chemistry, 280, 34186–34192.PubMedGoogle Scholar
  78. Pollack, S. J., Sadler, I. I., Hawtin, S. R., Tailor, V. J., & Shearman, M. S. (1995). Sulfated glycosaminoglycans and dyes attenuate the neurotoxic effects of beta-amyloid in rat PC12 cells. Neuroscience Letters, 184, 113–116.PubMedGoogle Scholar
  79. Raman, R., Sasisekharan, V., & Sasisekharan, R. (2005). Structural insights into biological roles of protein-glycosaminoglycan interactions. Chemistry & Biology, 12, 267–277.Google Scholar
  80. Rose, M., Dudas, B., Cornelli, U., & Hanin, I. (2003). Protective effect of the heparin-derived oligosaccharide C3, on AF64A-induced cholinergic lesion in rats. Neurobiology of Aging, 24, 481–490.PubMedGoogle Scholar
  81. Rose, M., Dudas, B., Cornelli, U., & Hanin, I. (2004). Glycosaminoglycan C3 protects against AF64A-induced cholinotoxicity in a dose-dependent and time-dependent manner. Brain Research, 1015, 96–102.PubMedGoogle Scholar
  82. Sadler, I. I. J., Hawtin, S. R., Tailor, V., Shearman, M. S., & Pollack, S. J. (1995). Glycosaminoglycans and sulphated polyanions attenuate the neurotoxic effects of beta-amyloid. Biochemical Society Transactions, 23, 106S.PubMedGoogle Scholar
  83. Sadler, I. I. J., Smith, D. W., Shearman, M. S., Ragan, C. I., Tailor, V. J., & Pollack, S. J. (1995). Sulphated compounds attenuate beta-amyloid toxicity by inhibiting its association with cells. NeuroReport, 7, 49–53.PubMedGoogle Scholar
  84. Saido, T. C., Iwatsubo, T., Mann, D. M., Shimada, H., Ihara, Y., & Kawashima, S. (1995). Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron, 14, 457–466.PubMedGoogle Scholar
  85. Scholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W., & Turnbull, J. E. (2003). Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's beta-secretase. The Journal of Cell Biology, 163, 97–107.PubMedGoogle Scholar
  86. Selkoe, D. J. (2001). Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. Journal of Alzheimer's Disease, 3, 75–80.PubMedGoogle Scholar
  87. Shioi, J., Pangalos, M. N., Ripellino, J. A., Vassilacopoulou, D., Mytilineou, C., Margolis, R. U., et al. (1995). The Alzheimer amyloid precursor proteoglycan (appican) is present in brain and is produced by astrocytes but not by neurons in primary neural cultures. The Journal of Biological Chemistry, 270, 11839–11844.PubMedGoogle Scholar
  88. Shioi, J., Refolo, L. M., Efthimiopoulos, S., & Robakis, N. K. (1993). Chondroitin sulfate proteoglycan form of cellular and cell-surface Alzheimer amyloid precursor. Neuroscience Letters, 154, 121–124.PubMedGoogle Scholar
  89. Small, S. A. (2005). Alzheimer disease, in living color. Nature Neuroscience, 8, 404–405.PubMedGoogle Scholar
  90. Small, D. H., Mok, S. S., Williamson, T. G., & Nurcombe, V. (1996). Role of proteoglycans in neural development, regeneration, and the aging brain. Journal of Neurochemistry, 67, 889–899.PubMedCrossRefGoogle Scholar
  91. Snow, A. D., Kinsella, M. G., Parks, E., Sekiguchi, R. T., Miller, J. D., Kimata, K., et al. (1995). Differential binding of vascular cell-derived proteoglycans (Perlecan, Biglycan, Decorin, and Versican) to the beta-amyloid protein of Alzheimer's disease. Archives of Biochemistry and Biophysics, 320, 84–95.PubMedGoogle Scholar
  92. Snow, A. D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., et al. (1988). The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. The American Journal of Pathology, 133, 456–463.PubMedGoogle Scholar
  93. Snow, A. D., Mar, H., Nochlin, D., Sekiguchi, R. T., Kimata, K., Koike, Y., et al. (1990). Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer's disease and Down's syndrome. The American Journal of Pathology, 137, 1253–1270.PubMedGoogle Scholar
  94. Snow, A. D., Nochlin, D., Sekiguchi, R., & Carlson, S. S. (1996). Identification and immunolocalization of a new class of proteoglycan (Keratan Sulfate) to the neuritic plaques of Alzheimer's disease. Experimental Neurology, 138, 305–317.PubMedGoogle Scholar
  95. Snow, A. D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimita, K., Mizutani, A., et al. (1994). An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar Aβ-amyloid in rat brain. Neuron, 12, 219–234.PubMedGoogle Scholar
  96. Snow, A. D., Sekiguchi, R. T., Nochlin, D., Kalaria, R. N., & Kimata, K. (1994). Heparan sulfate proteoglycan in diffuse plaques of hippocampus but not of cerebellum in Alzheimer's disease. The American Journal of Pathology, 144, 337–347.PubMedGoogle Scholar
  97. Snow, A. D., & Wight, T. N. (1989). Proteoglycans in the pathogenesis of Alzheimer's disease and other amyloidoses. Neurobiology of Aging, 10, 481–497.PubMedGoogle Scholar
  98. Su, J. H., Cummings, B. J., & Cotman, C. W. (1992). Localization of heparan sulfate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer's disease. Neuroscience, 51, 801–813.PubMedGoogle Scholar
  99. Tabaton, M., & Piccini, A. (2005). Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer's disease. International Journal of Experimental Pathology, 86, 139–145.PubMedGoogle Scholar
  100. Urbanyi, Z., Forrai, E., Sarvari, M., Liko, I., Illes, J., & Pazmany, T. (2005). Glycosaminoglycans inhibit neurodegenerative effects of serum amyloid P component in vitro. Neurochemistry International, 46, 471–477.PubMedGoogle Scholar
  101. Verdier, Y., Zarandi, M., & Penke, B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. Journal of Peptide Science, 10, 229–248.PubMedGoogle Scholar
  102. Walzer, M., Lorens, S., Hejna, M., Fareed, J., Hanin, I., Cornelli, U., et al. (2002). Low molecular weight glycosaminoglycan blockade of beta-amyloid induced neuropathology. European Journal of Pharmacology, 445, 211–220.PubMedGoogle Scholar
  103. Walzer, M., Lorens, S., Hejna, M., Fareed, J., Mervis, R., Hanin, I. et al. (2002). Low molecular weight glycosaminoglycan blockade of beta amyloid (25–35) induced neuropathology. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping the progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology 51) (pp. 165–170). New York: Kluwer Acedemic/Plenum Publishers.Google Scholar
  104. Watanabe, N., Araki, W., Chui, D. H., Makifuchi, T., Ihara, Y., & Tabira, T. (2004). Glypican-1 as an Abeta binding HSPG in the human brain: Its localization in DIG domains and possible roles in the pathogenesis of Alzheimer's disease. FASEB Journal, 18, 1013–1015.PubMedGoogle Scholar
  105. Westermark, P., Benson, M. D., Buxbaum, J. N., Cohen, A. S., Frangione, B., Ikeda, S., et al. (2005). Amyloid: Toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid, 12, 1–4.Google Scholar
  106. Wisniewski, H. M., & Wegiel, J. (1995). The neuropathology of Alzheimer's disease. Neuroimaging Clinics of North America, 5, 45–57.PubMedGoogle Scholar
  107. Wong, C. W., Quaranta, V., & Glenner, G. G. (1985). Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proceedings of the National Academy of Sciences of the United States of America, 82, 8729–8732.PubMedGoogle Scholar
  108. Woods, A. G., Cribbs, D. H., Whittemore, E. R., & Cotman, C. W. (1995). Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid(25–35) induced neurodegeneration in cultured hippocampal neurons. Brain Research, 697, 53–62.PubMedGoogle Scholar
  109. Wright, T. M. (2006). Tramiprosate. Drugs Today (Barc.), 42, 291–298.Google Scholar
  110. Yang, D. S., Serpell, L. C., Yip, C. M., McLaurin, J., Chrishti, M. A., Horne, P., et al. (2001). Assembly of Alzheimer's amyloid-beta fibrils and approaches for therapeutic intervention. Amyloid, 8, 10–19.PubMedGoogle Scholar
  111. Yang, S. P., Kwon, B. O., Gho, Y. S., & Chae, C. B. (2005). Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. Journal of Neurochemistry, 93, 118–127.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Céline Morissette
    • 1
  • Diane Lacombe
    • 1
  • Xianqi Kong
    • 1
  • Ahmed Aman
    • 1
  • Pascale Krzywkowski
    • 1
  • Lioudmila Rodionova
    • 1
  • Mounia Azzi
    • 1
  • Daniel Delorme
    • 1
  • Barry D. Greenberg
    • 1
  1. 1.Neurochem Inc.LavalCanada

Personalised recommendations