Advertisement

Design of Inhibitors of Amyloid-β Misfolding and Aggregation for Alzheimer's Therapy

  • Lisbell D. Estrada
  • Cristian Lasagna
  • Claudio Soto

Alzheimer’s disease (AD), which afflicts an estimated 16 million people worldwide (Refolo & Fillit, 2004), is the most common cause of dementia in the elderly. By 2050, the number of people with AD is expected to triple, placing an enormous burden on the health care and social care systems. This neurodegenerative disorder is characterized clinically by progressive loss of memory, language problems, social withdrawal, and deterioration of executive functions, and eventually culminates in death (Citron, 2002). Most AD cases are sporadic, with multiple risk factors, such as aging, environmental stress, and diet. The remaining AD cases, which account for 5– 10% of total AD cases, are inherited from one generation to the next and are referred to as familial AD (FAD).

Keywords

Amyloid Precursor Protein Amyloid Plaque Amyloid Fibril Rosmarinic Acid Biological Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adessi, C., Frossard, M. J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., et al. (2003). Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer's disease. The Journal of Biological Chemistry, 278, 13905–13911.CrossRefPubMedGoogle Scholar
  2. Adessi, C., & Soto, C. (2002). Converting a peptide into a drug: Strategies to improve stability and bioavailability. Current Medicinal Chemistry, 9, 963–978.CrossRefPubMedGoogle Scholar
  3. Agadjanyan, M. G., Ghochikyan, A., Petrushina, I., Vasilevko, V., Movsesyan, N., Mkrtichyan, M., et al. (2005). Prototype Alzheimer's disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. Journal of Immunology, 174, 1580–1586.Google Scholar
  4. Alexiou, C., Arnold, W., Klein, R. J., Parak, F. G., Hulin, P., Bergemann, C., et al. (2000). Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Research, 60, 6641–6648.PubMedGoogle Scholar
  5. Allsop, D., Howlett, D., Christie, G., & Karran, E. (1998). Fibrillogenesis of beta-amyloid. Biochemical Society Transactions, 26, 459–463.PubMedGoogle Scholar
  6. Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., et al. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine, 6, 916–919.CrossRefPubMedGoogle Scholar
  7. Bohr, H., & Bohr, J. (2000). Microwave-enhanced folding and denaturation of globular proteins. Physical Review E, 61, 4310–4314.CrossRefGoogle Scholar
  8. Bronfman, F. C., Garrido, J., Alvarez, A., Morgan, C., & Inestrosa, N. C. (1996). Laminin inhibits amyloid-beta-peptide fibrillation. Neuroscience Letters, 218, 201–203.CrossRefPubMedGoogle Scholar
  9. Castano, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., et al. (1995). Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E. The Biochemical Journal, 306(Pt. 2), 599–604.PubMedGoogle Scholar
  10. Castillo, G. M., Lukito, W., Peskind, E., Raskind, M., Kirschner, D. A., Yee, A. G., et al. (2000). Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain. Journal of Neuroscience Research, 62, 451–462.CrossRefPubMedGoogle Scholar
  11. Caughey, B., & Lansbury, P. T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Review of Neuroscience, 26, 267–298.CrossRefPubMedGoogle Scholar
  12. Chou, P. Y., & Fasman, G. D. (1978). Empirical predications of protein conformation. Annual Review of Biochemistry, 47, 251–276.CrossRefPubMedGoogle Scholar
  13. Citron, M. (2002). Alzheimer's disease: Treatments in discovery and development. Nature Neuroscience, 5(Suppl.), 1055–1057.CrossRefPubMedGoogle Scholar
  14. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261, 921–923.CrossRefPubMedGoogle Scholar
  15. Dewachter, I., Van Dorpe, J., Spittaels, K., Tesseur, I., Van den, H. C., Moechars, D., et al. (2000). Modeling Alzheimer's disease in transgenic mice: Effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Experimental Gerontology, 35, 831–841.CrossRefPubMedGoogle Scholar
  16. Duff, K. (2001). Transgenic mouse models of Alzheimer's disease: Phenotype and mechanisms of pathogenesis. Biochemical Society Symposium, 195–202.Google Scholar
  17. Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., & Haass, C. (2003). Reconstitution of gamma-secretase activity. Nature Cell Biology, 5, 486–488.CrossRefPubMedGoogle Scholar
  18. Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., & Lansbury, P. T., Jr. (1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: Implications for the pathogenesis and treatment of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 763–767.CrossRefPubMedGoogle Scholar
  19. Findeis, M. A., Lee, J. J., Kelley, M., Wakefield, J. D., Zhang, M. H., Chin, J., et al. (2001). Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid, 8, 231–241.PubMedGoogle Scholar
  20. Findeis, M. A., Musso, G. M., Arico-Muendel, C. C., Benjamin, H. W., Hundal, A. M., Lee, J. J., et al. (1999). Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry, 38, 6791–6800.CrossRefPubMedGoogle Scholar
  21. Geerts, H. (2004). NC-531 (Neurochem). Current Opinion in Investigational Drugs, 5, 95–100.PubMedGoogle Scholar
  22. Ghanta, J., Shen, C. L., Kiessling, L. L., & Murphy, R. M. (1996). A strategy for designing inhibitors of beta-amyloid toxicity. The Journal of Biological Chemistry, 271, 29525–29528.CrossRefPubMedGoogle Scholar
  23. Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890.CrossRefPubMedGoogle Scholar
  24. Golabek, A., Marques, M. A., Lalowski, M., & Wisniewski, T. (1995). Amyloid beta binding proteins in vitro and in normal human cerebrospinal fluid. Neuroscience Letters, 191, 79–82.CrossRefPubMedGoogle Scholar
  25. Goldgaber, D., Lerman, M. I., McBride, O. W., Saffiotti, U., & Gajdusek, D. C. (1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science, 235, 877–880.CrossRefPubMedGoogle Scholar
  26. Gordon, D. J., Sciarretta, K. L., & Meredith, S. C. (2001). Inhibition of beta-amyloid (40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry, 40, 8237–8245.CrossRefPubMedGoogle Scholar
  27. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., & Wisniewski, H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. The Journal of Biological Chemistry, 261, 6084–6089.PubMedGoogle Scholar
  28. Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S., & Jacobson, J. M. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415, 152–155.CrossRefPubMedGoogle Scholar
  29. Hamazaki, H. (1995). Amyloid P component promotes aggregation of Alzheimer's beta-amyloid peptide. Biochemical and Biophysical Research Communications, 211, 349–353.CrossRefPubMedGoogle Scholar
  30. Hardy, J., & Allsop, D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, 12, 383–388.CrossRefPubMedGoogle Scholar
  31. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.CrossRefPubMedGoogle Scholar
  32. Harper, J. D., Lieber, C. M., & Lansbury, P. T., Jr. (1997). Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chemistry and Biology, 4, 951–959.CrossRefPubMedGoogle Scholar
  33. Hartley, D. M., Walsh, D. M., Ye, C. P., Diehl, T., Vasquez, S., Vassilev, P. M., et al. (1999). Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. The Journal of Neuroscience, 19, 8876–8884.PubMedGoogle Scholar
  34. Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron, 38, 547–554.CrossRefPubMedGoogle Scholar
  35. Hughes, E., Burke, R. M., & Doig, A. J. (2000). Inhibition of toxicity in the beta-amyloid peptide fragment beta -(25–35) using N-methylated derivatives: A general strategy to prevent amyloid formation. The Journal of Biological Chemistry, 275, 25109–25115.CrossRefPubMedGoogle Scholar
  36. Janciauskiene, S., Garcia, d. F., Carlemalm, E., Dahlback, B., & Eriksson, S. (1995). Inhibition of Alzheimer beta-peptide fibril formation by serum amyloid P component. The Journal of Biological Chemistry, 270, 26041–26044.CrossRefPubMedGoogle Scholar
  37. Janciauskiene, S., Rubin, H., Lukacs, C. M., & Wright, H. T. (1998). Alzheimer's peptide Abeta1–42 binds to two beta-sheets of alpha1-antichymotrypsin and transforms it from inhibitor to substrate. The Journal of Biological Chemistry, 273, 28360–28364.CrossRefPubMedGoogle Scholar
  38. Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736.CrossRefPubMedGoogle Scholar
  39. Katzman, R., & Saitoh, T. (1991). Advances in Alzheimer's disease. FASEB Journal, 5, 278–286.PubMedGoogle Scholar
  40. Kim, C. A., & Berg, J. M. (1993). Thermodynamic Beta-Sheet Propensities Measured Using A Zinc Finger Host Peptide. Biophysical Journal, 64, A175.Google Scholar
  41. Kim, H. D., Cao, Y., Kong, F. K., Van Kampen, K. R., Lewis, T. L., Ma, Z., et al. (2005). Induction of a Th2 immune response by co-administration of recombinant adenovirus vectors encoding amyloid beta-protein and GM-CSF. Vaccine, 23, 2977–2986.CrossRefPubMedGoogle Scholar
  42. Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proceedings of the National Academy of Sciences of the United States of America, 100, 6382–6387.CrossRefPubMedGoogle Scholar
  43. Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., & Szarek, W. A. (1995). Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: Implications for Alzheimer's disease. Nature Medicine, 1, 143–148.CrossRefPubMedGoogle Scholar
  44. Kogan, M. J., Bastus, N. G., Amigo, R., Grillo-Bosch, D., Araya, E., Turiel, A., et al. (2006). Nanoparticle-Mediated Local and Remote Manipulation of Protein Aggregation. Nano Letters, 6, 110–115.CrossRefPubMedGoogle Scholar
  45. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.CrossRefPubMedGoogle Scholar
  46. Levine, H., III (1995). Soluble multimeric Alzheimer beta(1–40) pre-amyloid complexes in dilute solution. Neurobiology of Aging, 16, 755–764.CrossRefPubMedGoogle Scholar
  47. Liu, R., Barkhordarian, H., Emadi, S., Park, C. B., & Sierks, M. R. (2005). Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiology of Disease, 20, 74–81.CrossRefPubMedGoogle Scholar
  48. Lorenzo, A., & Yankner, B. A. (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243–12247.CrossRefPubMedGoogle Scholar
  49. Ma, J., Yee, A., Brewer, H. B., Jr., Das, S., & Potter, H. (1994). Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature, 372, 92–94.CrossRefPubMedGoogle Scholar
  50. Mason, J. M., Kokkoni, N., Stott, K., & Doig, A. J. (2003). Design strategies for anti-amyloid agents. Current Opinion in Structural Biology, 13, 526–532.CrossRefPubMedGoogle Scholar
  51. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245–4249.CrossRefPubMedGoogle Scholar
  52. Matsubara, E., Soto, C., Governale, S., Frangione, B., & Ghiso, J. (1996). Apolipoprotein J and Alzheimer's amyloid beta solubility. The Biochemical Journal, 316(Pt. 2), 671–679.PubMedGoogle Scholar
  53. Merlini, G., Ascari, E., Amboldi, N., Bellotti, V., Arbustini, E., Perfetti, V., et al. (1995). Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: Inhibition of amyloidogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92, 2959–2963.CrossRefPubMedGoogle Scholar
  54. Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. The Journal of Biological Chemistry, 274, 6483–6492.CrossRefPubMedGoogle Scholar
  55. Mook-Jung, I., Joo, I., Sohn, S., Kwon, H. J., Huh, K., & Jung, M. W. (1997). Estrogen blocks neurotoxic effects of beta-amyloid (1–42) and induces neurite extension on B103 cells. Neuroscience Letters, 235, 101–104.CrossRefPubMedGoogle Scholar
  56. Moore, G. J. (1994). Designing Peptide Mimetics. Trends in Pharmacological Sciences, 15, 124–129.CrossRefPubMedGoogle Scholar
  57. Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750.CrossRefPubMedGoogle Scholar
  58. Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer's disease. Journal of Neurochemistry, 87, 172–181.CrossRefPubMedGoogle Scholar
  59. Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.PubMedGoogle Scholar
  60. Pallitto, M. M., Ghanta, J., Heinzelman, P., Kiessling, L. L., & Murphy, R. M. (1999). Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry, 38, 3570–3578.CrossRefPubMedGoogle Scholar
  61. Pappolla, M., Bozner, P., Soto, C., Shao, H., Robakis, N. K., Zagorski, M., et al. (1998). Inhibition of Alzheimer beta-fibrillogenesis by melatonin. The Journal of Biological Chemistry, 273, 7185–7188.CrossRefPubMedGoogle Scholar
  62. Penn, S. G., He, L., & Natan, M. J. (2003). Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 7, 609–615.CrossRefPubMedGoogle Scholar
  63. Permanne, B., Adessi, C., Saborio, G. P., Fraga, S., Frossard, M. J., Van Dorpe, J., et al. (2002). Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB Journal, 16, 860–862.PubMedGoogle Scholar
  64. Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., et al. (2002). Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science, 298, 1379.CrossRefPubMedGoogle Scholar
  65. Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., & Cotman, C. W. (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. The Journal of Neuroscience, 13, 1676–1687.PubMedGoogle Scholar
  66. Price, D. L., Tanzi, R. E., Borchelt, D. R., & Sisodia, S. S. (1998). Alzheimer's disease: Genetic studies and transgenic models. Annual Review of Genetics, 32, 461–493.CrossRefPubMedGoogle Scholar
  67. Refolo, L. M., & Fillit, H. M. (2004). Drug discovery for Alzheimer's disease: The end of the beginning. Journal of Molecular Neuroscience, 24, 1–8.CrossRefPubMedGoogle Scholar
  68. Salomon, A. R., Marcinowski, K. J., Friedland, R. P., & Zagorski, M. G. (1996). Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry, 35, 13568–13578.CrossRefPubMedGoogle Scholar
  69. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–177.CrossRefPubMedGoogle Scholar
  70. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Medicine, 2, 864–870.CrossRefPubMedGoogle Scholar
  71. Schwarzman, A. L., Gregori, L., Vitek, M. P., Lyubski, S., Strittmatter, W. J., Enghilde, et al. (1994). Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 91, 8368–8372.CrossRefPubMedGoogle Scholar
  72. Selkoe, D. J. (1994). Alzheimer's disease: A central role for amyloid. Journal of Neuropathology and Experimental Neurology, 53, 438–447.CrossRefPubMedGoogle Scholar
  73. Selkoe, D. J. (1997). Alzheimer's disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.CrossRefPubMedGoogle Scholar
  74. Selkoe, D. J. (2000). The origins of Alzheimer disease: A is for amyloid. The Journal of the American Medical Association, 283, 1615–1617.CrossRefGoogle Scholar
  75. Selkoe, D. J., & Podlisny, M. B. (2002). Deciphering the genetic basis of Alzheimer's disease. Annual Review of Genomics and Human Genetics, 3, 67–99.CrossRefPubMedGoogle Scholar
  76. Serpell, L. C., & Smith, J. M. (2000). Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. Journal of Molecular Biology, 299, 225–231.CrossRefPubMedGoogle Scholar
  77. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., et al. (1992). Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature, 359, 325–327.CrossRefPubMedGoogle Scholar
  78. Sigurdsson, E. M., Knudsen, E., Asuni, A., Fitzer-Attas, C., Sage, D., Quartermain, D., et al. (2004). An attenuated immune response is sufficient to enhance cognition in an Alzheimer's disease mouse model immunized with amyloid-beta derivatives. The Journal of Neuroscience, 24, 6277–6282.CrossRefPubMedGoogle Scholar
  79. Sigurdsson, E. M., Permanne, B., Soto, C., Wisniewski, T., & Frangione, B. (2000). In vivo reversal of amyloid-beta lesions in rat brain. Journal of Neuropathology and Experimental Neurology, 59, 11–17.PubMedGoogle Scholar
  80. Simons, K., & Ehehalt, R. (2002). Cholesterol, lipid rafts, and disease. The Journal of Clinical Investigation, 110, 597–603.PubMedGoogle Scholar
  81. Soto, C. (1999). Plaque busters: Strategies to inhibit amyloid formation in Alzheimer's disease. Molecular Medicine Today, 5, 343–350.CrossRefPubMedGoogle Scholar
  82. Soto, C., Branes, M. C., Alvarez, J., & Inestrosa, N. C. (1994). Structural determinants of the Alzheimer's amyloid beta-peptide. Journal of Neurochemistry, 63, 1191–1198.PubMedCrossRefGoogle Scholar
  83. Soto, C., & Castano, E. M. (1996). The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. The Biochemical Journal, 314(Pt. 2), 701–707.PubMedGoogle Scholar
  84. Soto, C., Castano, E. M., Frangione, B., & Inestrosa, N. C. (1995). The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. The Journal of Biological Chemistry, 270, 3063–3067.CrossRefPubMedGoogle Scholar
  85. Soto, C., Ghiso, J., & Frangione, B. (1997). Alzheimer's amyloid-ß aggregation is modulated by the interaction of multiple factors. Alzheimer's Research, 3, 215–222.Google Scholar
  86. Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castano, E. M., & Frangione, B. (1998). Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy. Nature Medicine, 4, 822–826.CrossRefPubMedGoogle Scholar
  87. Spinney, L. (2004). Update on Elan vaccine for Alzheimer's disease. Lancet Neurology, 3, 5.Google Scholar
  88. Tagliavini, F., Giaccone, G., Verga, L., Frangione, B., & Bugiani, O. (1992). Down syndrome as a key to the time sequence of brain changes in Alzheimer disease. Progress in Clinical and Biological Research, 379, 143–158.PubMedGoogle Scholar
  89. Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., et al. (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature, 422, 438–441.CrossRefPubMedGoogle Scholar
  90. Teplow, D. B. (1998). Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid, 5, 121–142.PubMedGoogle Scholar
  91. Tjernberg, L. O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A. R., Thyberg, J., et al. (1996). Arrest of beta-amyloid fibril formation by a pentapeptide ligand. The Journal of Biological Chemistry, 271, 8545–8548.CrossRefPubMedGoogle Scholar
  92. Tomiyama, T., Shoji, A., Kataoka, K., Suwa, Y., Asano, S., Kaneko, H., et al. (1996). Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. The Journal of Biological Chemistry, 271, 6839–6844.CrossRefPubMedGoogle Scholar
  93. Trojanowski, J. Q. (2002). Tauists, Baptists, Syners, Apostates, and new data. Annals of Neurology, 52, 263–265.CrossRefPubMedGoogle Scholar
  94. Tycko, R. (2006). Molecular structure of amyloid fibrils: Insights from solid-state NMR. Quarterly Reviews of Biophysics, 39,1–55.CrossRefPubMedGoogle Scholar
  95. Van Leuven, F. (2000). Single and multiple transgenic mice as models for Alzheimer's disease. Progress in Neurobiology, 61, 305–312.CrossRefPubMedGoogle Scholar
  96. Vassar, R., & Citron, M. (2000). Abeta-generating enzymes: Recent advances in beta- and gamma-secretase research. Neuron, 27, 419–422.CrossRefPubMedGoogle Scholar
  97. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J., & Selkoe, D. J. (2002). Amyloid-beta oligomers: Their production, toxicity and therapeutic inhibition. Biochemical Society Transactions, 30, 552–557.CrossRefPubMedGoogle Scholar
  98. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., & Teplow, D. B. (1997). Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. The Journal of Biological Chemistry, 272, 22364–22372.CrossRefPubMedGoogle Scholar
  99. Wang, S. S., Chen, Y. T., & Chou, S. W. (2005). Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants. Biochimica et Biophysica Acta, 1741, 307–313.PubMedGoogle Scholar
  100. Wood, S. J., MacKenzie, L., Maleeff, B., Hurle, M. R., & Wetzel, R. (1996). Selective inhibition of Abeta fibril formation. The Journal of Biological Chemistry, 271, 4086–4092.CrossRefPubMedGoogle Scholar
  101. Wood, S. J., Wetzel, R., Martin, J. D., & Hurle, M. R. (1995). Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4. Biochemistry, 34, 724–730.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lisbell D. Estrada
    • 1
  • Cristian Lasagna
    • 1
  • Claudio Soto
    • 1
  1. 1.Department of Neurology Neurosciences and Cell BiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations