Tau Pathology as a Target in Alzheimer's Therapeutics

  • Khalid Iqbal
  • Inge Grundke-Iqbal

Keywords: Abnormally hyperphosphorylated tau, Alzheimer disease, memantine, microtubeassociated protein tau, microtubule assembly, neurofibrillary pathology, protein phosphatase-2A, tauopathies


Alzheimer Disease Biological Chemistry Microtubule Assembly Paired Helical Filament FEBS Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alafuzoff, I., Iqbal, K., Friden, H., Adolfsson, R., & Winblad, B. (1987). Histopathological criteria for progressive dementia disorders: Clinical–pathological correlation and classification by multivariate data analysis. Acta Neuropathologica (Berlin), 74, 209–225.CrossRefGoogle Scholar
  2. Alonso, A. D., Grundke-Iqbal, I., Barra, H. S., & Iqbal, K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proceedings of the National Academy of Sciences of the United States of America, 94, 298–303.CrossRefPubMedGoogle Scholar
  3. Alonso, A. C., Grundke-Iqbal, I., & Iqbal, K. (1996). Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Medicine, 2, 783–787.CrossRefPubMedGoogle Scholar
  4. Alonso, A. d.-C., Li, B., Grundke-Iqbal, I., & Iqbal, K. (2006). Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 8864–8869.CrossRefGoogle Scholar
  5. Alonso, A. d.-C., Mederlyova, A., Novak, M., Grundke-Iqbal, I., & Iqbal, K. (2004). Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. The Journal of Biological Chemistry, 279, 34873–34881.Google Scholar
  6. Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91, 5562–5566.CrossRefPubMedGoogle Scholar
  7. An, W. L., Cowburn, R. F., Li, L., Braak, H., Alafuzoff, I., Iqbal, K., et al. (2003). Up-regulation of phosphorylated/activated p70 s6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. The American Journal of Pathology, 163, 591–607.PubMedGoogle Scholar
  8. Anderton, B. H., Betts, J., Blackstock, W. P., Brion, J.P., Chapman, S., Connell, J., et al. (2001). Sites of phosphorylation in tau and factors affecting their regulation. Biochemical Society Symposium, 73–80.Google Scholar
  9. Arnold, C. S., Johnson, G. V., Cole, R. N., Dong, D. L., Lee, M., & Hart, G. W. (1996). The microtubule-associated protein tau is extensively modified with o-linked n-acetylglucosamine. The Journal of Biological Chemistry, 271, 28741–28744.CrossRefPubMedGoogle Scholar
  10. Arriagada, P. V., Growdon, J.H., Hedley-Whyte, E. T., & Hyman, B. T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 42, 631–639.PubMedGoogle Scholar
  11. Bennecib, M., Gong, C. X., Grundke-Iqbal, I., & Iqbal, K. (2001). Inhibition of pp-2a upregulates camkii in rat forebrain and induces hyperphosphorylation of tau at ser 262/356. FEBS Letters, 490, 15–22.CrossRefPubMedGoogle Scholar
  12. Bhaskar, K., Yen, S. H., & Lee, G. (2005). Disease-related modifications in tau affect the interaction between fyn and tau. The Journal of Biological Chemistry, 280, 35119–35125.CrossRefPubMedGoogle Scholar
  13. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., et al. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics, 65, 664–670.CrossRefPubMedGoogle Scholar
  14. Chen, S., Grundke-Iqbal, I., & Iqbal, K. (2006). I1 pp2a and i2 pp2a affect tau phosphorylation via association with the catalytic subunit of protein phosphatase 2a. Alzheimer's and Dementia, 2, S471.Google Scholar
  15. Cheng, L. Y., Wang, J.Z., Gong, C. X., Pei, J. J., Zaidi, T., Grundke-Iqbal, I. et al. (2000). Multiple forms of phosphatase from human brain: Isolation and partial characterization of affi-gel blue binding phosphatases. Neurochemical Research, 25, 107–120.CrossRefPubMedGoogle Scholar
  16. Cheng, L. Y., Wang, J. Z., Gong, C. X., Pei, J. J., Zaidi, T., Grundke-Iqbal, I. et al. (2001). Multiple forms of phosphatase from human brain: Isolation and partial characterization of affi-gel blue nonbinding phosphatase activities. Neurochemical Research, 26, 425–438.CrossRefPubMedGoogle Scholar
  17. Cho, J. H., & Johnson, G. V. (2003). Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. The Journal of Biological Chemistry, 278, 187–193.Google Scholar
  18. Chohan, M. O., Khatoon, S., Iqbal, I. G., & Iqbal, K. (2006). Involvement of i2pp2a in the abnormal hyperphosphorylation of tau and its reversal by memantine. FEBS Letters, 580, 3973–3979.CrossRefPubMedGoogle Scholar
  19. Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Review of Biochemistry, 58, 453–508.CrossRefPubMedGoogle Scholar
  20. Cohen, P., Alemany, S., Hemmings, B. A., Resink, T. J., Stralfors, P., & Tung, H. Y. (1988). Protein phosphatase-1 and protein phosphatase-2a from rabbit skeletal muscle. Methods in Enzymology, 159, 390–408.CrossRefPubMedGoogle Scholar
  21. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., & Tsai, L. H. (2003). Aberrant cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron, 40, 471–483.CrossRefPubMedGoogle Scholar
  22. Dickson, D. W., Crystal, H. A., Mattiace, L. A., Masur, D. M., Blau, A. D., Davies, P., et al. (1992). Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging, 13, 179–189.CrossRefPubMedGoogle Scholar
  23. Dickson, D. W., Farlo, J., Davies, P., Crystal, H., Fuld, P., & Yen, S. H. (1988). Alzheimer's disease. A double-labeling immunohistochemical study of senile plaques. The American Journal of Pathology, 132, 86–101.PubMedGoogle Scholar
  24. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., & Mandelkow, E. (1997). Mark, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 89, 297–308.CrossRefPubMedGoogle Scholar
  25. Drewes, G., Lichtenberg-Kraag, B., Doring, F., Mandelkow, E. M., Biernat, J., Goris, J., et al. (1992). Mitogen activated protein (map) kinase transforms tau protein into an Alzheimer-like state. The Embo Journal, 11, 2131–2138.PubMedGoogle Scholar
  26. Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H. E., et al. (1995). Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. The Journal of Biological Chemistry, 270, 7679–7688.Google Scholar
  27. Gong, C. X., Lidsky, T., Wegiel, J., Zuck, L., Grundke-Iqbal, I., & Iqbal, K. (2000). Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2a in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. The Journal of Biological Chemistry, 275, 5535–5544.CrossRefPubMedGoogle Scholar
  28. Gong, C. X., Shaikh, S., Wang, J. Z., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1995). Phosphatase activity toward abnormally phosphorylated tau: Decrease in Alzheimer disease brain. Journal of Neurochemistry, 65, 732–738.PubMedGoogle Scholar
  29. Gong, C. X., Singh, T. J., Grundke-Iqbal, I., & Iqbal, K. (1993). Phosphoprotein phosphatase activities in Alzheimer disease brain. Journal of Neurochemistry, 61, 921–927.CrossRefPubMedGoogle Scholar
  30. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., & Wisniewski, H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. The Journal of Biological Chemistry, 261, 6084–6089.PubMedGoogle Scholar
  31. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83, 4913–4917.CrossRefPubMedGoogle Scholar
  32. Gunnarsson, M., Kilander, L., Sudelof, J., Basun, H., & Lannfelt, L. (2006). Reduction of hyperphosphorylated tau during memantine treatment of Alzheimer's disease. Alzheimer's and Dementia, 2, S63–S64.CrossRefGoogle Scholar
  33. Hanger, D. P., Betts, J. C., Loviny, T. L., Blackstock, W. P., & Anderton, B. H. (1998). New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. Journal of Neurochemistry, 71, 2465–2476.PubMedGoogle Scholar
  34. Hart, G. W. (1997). Dynamic o-linked glycosylation of nuclear and cytoskeletal proteins. Annual Review of Biochemistry, 66, 315–335.CrossRefPubMedGoogle Scholar
  35. Hart, G. W., Kreppel, L. K., Comer, F. I., Arnold, C. S., Snow, D. M., Ye, Z., et al. (1996). O-glcnacylation of key nuclear and cytoskeletal proteins: Reciprocity with o-phosphorylation and putative roles in protein multimerization. Glycobiology, 6, 711–716.CrossRefPubMedGoogle Scholar
  36. Hong, M., Chen, D. C., Klein, P. S., & Lee, V. M. (1997). Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. The Journal of Biological Chemistry, 272, 25326–25332.CrossRefPubMedGoogle Scholar
  37. Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia ftdp-17. Nature, 393, 702–705.CrossRefPubMedGoogle Scholar
  38. Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., et al. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta, 1739, 198–210.PubMedGoogle Scholar
  39. Iqbal, K., & Grundke-Iqbal, I. (2005). Metabolic/signal transduction hypothesis of Alzheimer's disease and other tauopathies. Acta Neuropathologica, 109, 25–31.CrossRefPubMedGoogle Scholar
  40. Iqbal, K., Grundke-Iqbal, I., Smith, A. J., George, L., Tung, Y. C., & Zaidi, T. (1989). Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 86, 5646–5650.CrossRefPubMedGoogle Scholar
  41. Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G. Y., Shaikh, S. S., et al. (1986). Defective brain microtubule assembly in Alzheimer's disease. Lancet, 2, 421–426.CrossRefPubMedGoogle Scholar
  42. Iqbal, K., Zaidi, T., Bancher, C., & Grundke-Iqbal, I. (1994). Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Letters, 349, 104–108.CrossRefPubMedGoogle Scholar
  43. Johnson, G. V., & Hartigan, J. A. (1999). Tau protein in normal and Alzheimer's disease brain: An update. Journal of Alzheimer's Disease, 1, 329–351.PubMedGoogle Scholar
  44. Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.CrossRefPubMedGoogle Scholar
  45. Khatoon, S., Grundke-Iqbal, I., & Iqbal, K. (1992). Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: A radioimmuno-slot-blot assay for nanograms of the protein. Journal of Neurochemistry, 59, 750–753.CrossRefPubMedGoogle Scholar
  46. Khatoon, S., Grundke-Iqbal, I., & Iqbal, K. (1994). Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Letters, 351, 80–84.CrossRefPubMedGoogle Scholar
  47. Khatoon, S., Grundke-Iqbal, I., & Iqbal, K. (1995). Guanosine triphosphate binding to beta-subunit of tubulin in Alzheimer's disease brain: Role of microtubule-associated protein tau. Journal of Neurochemistry, 64, 777–787.PubMedGoogle Scholar
  48. Kins, S., Kurosinski, P., Nitsch, R. M., & Gotz, J. (2003). Activation of the erk and jnk signaling pathways caused by neuron-specific inhibition of pp2a in transgenic mice. The American Journal of Pathology, 163, 833–843.PubMedGoogle Scholar
  49. Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K., & Grundke-Iqbal, I. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. The Journal of Biological Chemistry, 268, 24374–24384.PubMedGoogle Scholar
  50. Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T., & Hisanaga, S. (2000). Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. The Journal of Biological Chemistry, 275, 17166–17172.CrossRefPubMedGoogle Scholar
  51. Ledesma, M. D., Correas, I., Avila, J., & Diaz-Nido, J. (1992). Implication of brain cdc2 and map2 kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Letters, 308, 218–224.CrossRefPubMedGoogle Scholar
  52. Lee, V. M., Balin, B. J., Otvos, L., Jr., & Trojanowski, J. Q. (1991). A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science, 251, 675–678.CrossRefPubMedGoogle Scholar
  53. Lew, J., Huang, Q. Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., et al. (1994). A brain-specific activator of cyclin-dependent kinase 5. Nature, 371, 423–426.CrossRefPubMedGoogle Scholar
  54. Li, M., Guo, H., & Damuni, Z. (1995). Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2a from bovine kidney. Biochemistry, 34, 1988–1996.CrossRefPubMedGoogle Scholar
  55. Li, M., Makkinje, A., & Damuni, Z. (1996a). Molecular identification of i1pp2a, a novel potent heat-stable inhibitor protein of protein phosphatase 2a. Biochemistry, 35, 6998–7002.CrossRefPubMedGoogle Scholar
  56. Li, M., Makkinje, A., & Damuni, Z. (1996b). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2a. The Journal of Biological Chemistry, 271, 11059–11062.CrossRefPubMedGoogle Scholar
  57. Li, L., Sengupta, A., Haque, N., Grundke-Iqbal, I., & Iqbal, K. (2004). Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Letters, 566, 261–269.CrossRefPubMedGoogle Scholar
  58. Lindwall, G., & Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. The Journal of Biological Chemistry, 259, 5301–5305.PubMedGoogle Scholar
  59. Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2005). Contributions of protein phosphatases pp1, pp2a, pp2b and pp5 to the regulation of tau phosphorylation. The European Journal of Neuroscience, 22, 1942–1950.CrossRefPubMedGoogle Scholar
  60. Liu, F., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2002). Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and gsk-3beta. FEBS Letters, 530, 209–214.CrossRefPubMedGoogle Scholar
  61. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., & Gong, C. X. (2004). O-glcnacylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 10804–10809.CrossRefPubMedGoogle Scholar
  62. Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2002). Aberrant glycosylation modulates phosphorylation of tau by protein kinase a and dephosphorylation of tau by protein phosphatase 2a and 5. Neuroscience, 115, 829–837.CrossRefPubMedGoogle Scholar
  63. Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., Merkle, R. K., & Gong, C. X. (2002). Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Letters, 512, 101–106.CrossRefPubMedGoogle Scholar
  64. Liu, S. J., Zhang, J. Y., Li, H. L., Fang, Z. Y., Wang, Q., Deng, H. M., et al. (2004). Tau becomes a more favorable substrate for gsk-3 when it is prephosphorylated by pka in rat brain. The Journal of Biological Chemistry, 279, 50078–50088.CrossRefPubMedGoogle Scholar
  65. Lovestone, S., Hartley, C. L., Pearce, J., & Anderton, B. H. (1996). Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: The effects on the organization and stability of microtubules. Neuroscience, 73, 1145–1157.CrossRefPubMedGoogle Scholar
  66. Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R., & Avila, J. (2001). Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in gsk-3beta conditional transgenic mice. The Embo Journal, 20, 27–39.CrossRefPubMedGoogle Scholar
  67. Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titani, K., et al. (1995). Proline-directed and non-proline-directed phosphorylation of phf-tau. The Journal of Biological Chemistry, 270, 823–829.CrossRefPubMedGoogle Scholar
  68. Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., et al. (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 38, 555–565.CrossRefPubMedGoogle Scholar
  69. Oliver, C. J., & Shenolikar, S. (1998). Physiologic importance of protein phosphatase inhibitors. Frontiers in Bioscience, 3, D961–D972.PubMedGoogle Scholar
  70. Patzke, H., & Tsai, L. H. (2002). Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. The Journal of Biological Chemistry, 277, 8054–8060.CrossRefPubMedGoogle Scholar
  71. Pei, J. J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B., et al. (1999). Distribution of active glycogen synthase kinase 3beta (gsk-3beta) in brains staged for Alzheimer disease neurofibrillary changes. Journal of Neuropathology and Experimental Neurology, 58, 1010–1019.CrossRefPubMedGoogle Scholar
  72. Pei, J. J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B., et al. (2001). Localization of active forms of c-jun kinase (jnk) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. Journal of Alzheimer's Disease, 3, 41–48.PubMedGoogle Scholar
  73. Pei, J. J., Gong, C. X., An, W. L., Winblad, B., Cowburn, R. F., Grundke-Iqbal, I., et al. (2003). Okadaic-acid-induced inhibition of protein phosphatase 2a produces activation of mitogen-activated protein kinases erk1/2, mek1/2, and p70 s6, similar to that in Alzheimer's disease. The American Journal of Pathology, 163, 845–858.PubMedGoogle Scholar
  74. Pei, J. J., Grundke-Iqbal, I., Iqbal, K., Bogdanovic, N., Winblad, B., & Cowburn, R. F. (1998). Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Research, 797, 267–277.CrossRefPubMedGoogle Scholar
  75. Perez, M., Hernandez, F., Lim, F., Diaz-Nido, J., & Avila, J. (2003). Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimer's Disease, 5, 301–308.PubMedGoogle Scholar
  76. Poorkaj, P., Bird, T. D., Wijsman, E., Nemens, E., Garruto, R. M., Anderson, L., et al. (1998). Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology, 43, 815–825.CrossRefPubMedGoogle Scholar
  77. Reisberg, B., Doody, R., Stoffler, A., Schmitt, F., Ferris, S., & Mobius, H. J. (2003). Memantine in moderate-to-severe Alzheimer's disease. The New England Journal of Medicine, 348, 1333–1341.CrossRefPubMedGoogle Scholar
  78. Roder, H. M., Eden, P. A., & Ingram, V. M. (1993). Brain protein kinase pk40erk converts tau into a phf-like form as found in Alzheimer's disease. Biochemical and Biophysical Research Communications, 193, 639–647.CrossRefPubMedGoogle Scholar
  79. Scott, C. W., Spreen, R. C., Herman, J. L., Chow, F. P., Davison, M. D., Young, J., et al. (1993). Phosphorylation of recombinant tau by camp-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. The Journal of Biological Chemistry, 268, 1166–1173.PubMedGoogle Scholar
  80. Sengupta, A., Wu, Q., Grundke-Iqbal, I., Iqbal, K., & Singh, T. J. (1997). Potentiation of gsk-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Molecular and Cellular Biochemistry, 167, 99–105.CrossRefPubMedGoogle Scholar
  81. Singh, T. J., Grundke-Iqbal, I., & Iqbal, K. (1995). Phosphorylation of tau protein by casein kinase-1 converts it to an abnormal Alzheimer-like state. Journal of Neurochemistry, 64, 1420–1423.PubMedCrossRefGoogle Scholar
  82. Singh, T. J., Grundke-Iqbal, I., McDonald, B., & Iqbal, K. (1994). Comparison of the phosphorylation of microtubule-associated protein tau by non-proline dependent protein kinases. Molecular and Cellular Biochemistry, 131, 181–189.CrossRefPubMedGoogle Scholar
  83. Singh, T. J., Wang, J. Z., Novak, M., Kontzekova, E., Grundke-Iqbal, I., & Iqbal, K. (1996). Calcium/calmodulin-dependent protein kinase ii phosphorylates tau at ser-262 but only partially inhibits its binding to microtubules. FEBS Letters, 387, 145–148.CrossRefPubMedGoogle Scholar
  84. Sironi, J. J., Yen, S. H., Gondal, J. A., Wu, Q., Grundke-Iqbal, I., & Iqbal, K. (1998). Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by camkii than pka or phk. FEBS Letters, 436, 471–475.CrossRefPubMedGoogle Scholar
  85. Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A., & Ghetti, B. (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences of the United States of America, 95, 7737–7741.CrossRefPubMedGoogle Scholar
  86. Spittaels, K., Van den Haute, C., Van Dorpe, J., Geerts, H., Mercken, M., Bruynseels, K., et al. (2000). Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. The Journal of Biological Chemistry, 275, 41340–41349.CrossRefPubMedGoogle Scholar
  87. Stambolic, V., Ruel, L., & Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Current Biology, 6, 1664–1668.CrossRefPubMedGoogle Scholar
  88. Steiner, B., Mandelkow, E. M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., et al. (1990). Phosphorylation of microtubule-associated protein tau: Identification of the site for ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. The Embo Journal, 9, 3539–3544.PubMedGoogle Scholar
  89. Tanaka, T., Zhong, J., Iqbal, K., Trenkner, E., & Grundke-Iqbal, I. (1998). The regulation of phosphorylation of tau in sy5y neuroblastoma cells: The role of protein phosphatases. FEBS Letters, 426, 248–254.CrossRefPubMedGoogle Scholar
  90. Tanimukai, H., Grundke-Iqbal, I., & Iqbal, K. (2005). Up-regulation of inhibitors of protein phosphatase-2a in Alzheimer's disease. The American Journal of Pathology, 166, 1761–1771.PubMedGoogle Scholar
  91. Tatebayashi, Y., Haque, N., Tung, Y. C., Iqbal, K., & Grundke-Iqbal, I. (2004). Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport. Journal of Cell Science, 117, 1653–1663.CrossRefPubMedGoogle Scholar
  92. Tsai, L. H., Takahashi, T., Caviness, V. S., Jr., & Harlow, E. (1993). Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development, 119, 1029–1040.PubMedGoogle Scholar
  93. Tsujio, I., Zaidi, T., Xu, J., Kotula, L., Grundke-Iqbal, I., & Iqbal, K. (2005). Inhibitors of protein phosphatase-2a from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Letters, 579, 363–372.CrossRefPubMedGoogle Scholar
  94. Ulitzur, N., Rancano, C., & Pfeffer, S. R. (1997). Biochemical characterization of mapmodulin, a protein that binds microtubule-associated proteins. The Journal of Biological Chemistry, 272, 30577–30582.CrossRefPubMedGoogle Scholar
  95. von Lindern, M., van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12, 3346–3355.Google Scholar
  96. Wagner, U., Utton, M., Gallo, J. M., & Miller, C. C. (1996). Cellular phosphorylation of tau by gsk-3 beta influences tau binding to microtubules and microtubule organisation. Journal of Cell Science, 109(Pt 6), 1537–1543.PubMedGoogle Scholar
  97. Walaas, S. I., & Greengard, P. (1991). Protein phosphorylation and neuronal function. Pharmacological Reviews, 43, 299–349.PubMedGoogle Scholar
  98. Wang, J. Z., Gong, C. X., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1995). Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2a and -2b. The Journal of Biological Chemistry, 270, 4854–4860.CrossRefPubMedGoogle Scholar
  99. Wang, J. Z., Grundke-Iqbal, I., & Iqbal, K. (1996). Glycosylation of microtubule-associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nature Medicine, 2, 871–875.CrossRefPubMedGoogle Scholar
  100. Wang, J. Z., Grundke-Iqbal, I., & Iqbal, K. (1996). Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2a, -2b and -1. Brain Research Molecular Brain Research, 38, 200–208.CrossRefPubMedGoogle Scholar
  101. Wang, J. Z., Wu, Q., Smith, A., Grundke-Iqbal, I., & Iqbal, K. (1998). Tau is phosphorylated by gsk-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by a-kinase. FEBS Letters, 436, 28–34.CrossRefPubMedGoogle Scholar
  102. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 72, 1858–1862.CrossRefPubMedGoogle Scholar
  103. Winblad, B., & Poritis, N. (1999). Memantine in severe dementia: Results of the 9m-best study (benefit and efficacy in severely demented patients during treatment with memantine). International Journal of Geriatric Psychiatry, 14, 135–146.CrossRefPubMedGoogle Scholar
  104. Woodgett, J. R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor a. The Embo Journal, 9, 2431–2438.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Khalid Iqbal
    • 1
  • Inge Grundke-Iqbal
    • 1
  1. 1.Department of NeurochemistryNYS Institute for Basic Research in Developmental DisabilitiesUSA

Personalised recommendations