Nonsteroidal Anti-inflammatory Drugs (NSAIDs) and Derived Aβ42-Lowering Molecules for Treatment and Prevention of Alzheimer's Disease (AD)

  • Sascha Weggen
  • Eva Czirr
  • Stefanie Leuchtenberger
  • Jason Eriksen

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been considered for the treatment and prevention of Alzheimer’s disease (AD) for more than two decades. The rationale for this approach is derived from epidemiological studies and from the observation that the causative amyloid pathology in the AD brain is accompanied by a secondary inflammatory response. Given that the primary pharmacological targets of NSAIDs are cyclooxygenases (COX), the reduced expression of inflammatory markers in AD mouse models after peripheral administration of NSAIDs has suggested that these compounds may be beneficial in AD by inhibiting a wide range of inflammatory responses in the central nervous system.


Alzheimer Disease Amyloid Precursor Protein Tg2576 Mouse Amyloid Plaque Amyloid Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Halim, M. S., Sjoquist, B., & Anggard, E. (1978). Inhibition of prostaglandin synthesis in rat brain. Acta Pharmacol Toxicol (Copenh), 43, 266–272.Google Scholar
  2. Abraham, C. R., Selkoe, D. J., & Potter, H. (1988). Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell, 52, 487–501.CrossRefPubMedGoogle Scholar
  3. Agdeppa, E. D., Kepe, V., Petri, A., Satyamurthy, N., Liu, J., Huang, S. C., et al. (2003). In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer's brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18) F]fluoroethyl)(methyl) amino]-2-naphthyl]ethylidene) malono nitrile. Neuroscience, 117, 723–730.CrossRefPubMedGoogle Scholar
  4. Aisen, P. S. (2002). The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurology, 1, 279–284.CrossRefPubMedGoogle Scholar
  5. Aisen, P. S., Davis, K. L., Berg, J. D., Schafer, K., Campbell, K., Thomas, R. G., et al. (2000). A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's Disease Cooperative Study. Neurology, 54, 588–593.Google Scholar
  6. Aisen, P. S., Schafer, K. A., Grundman, M., Pfeiffer, E., Sano, M., Davis, K. L., et al. (2003). Effects of rofecoxib or naproxen vs placebo on alzheimer disease progression: A randomized controlled trial. The Journal of the American Medical Association, 289, 2819–2826.CrossRefGoogle Scholar
  7. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21, 383–421.CrossRefPubMedGoogle Scholar
  8. Alafuzoff, I., Overmyer, M., Helisalmi, S., & Soininen, H. (2000). Lower counts of astroglia and activated microglia in patients with alzheimer's disease with regular use of non-steroidal anti-inflammatory drugs. Journal of Alzheimer's Disease, 2, 37–46.PubMedGoogle Scholar
  9. Avramovich, Y., Amit, T., & Youdim, M. B. (2002). Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. The Journal of Biological Chemistry 277, 31466–31473.CrossRefPubMedGoogle Scholar
  10. Baron, J. A. & Sandler, R. S. (2000). Nonsteroidal anti-inflammatory drugs and cancer prevention. Annual Review of Medicine, 51, 511–523.CrossRefPubMedGoogle Scholar
  11. Beher, D., Clarke, E. E., Wrigley, J. D., Martin, A. C., Nadin, A., Churcher, I., & Shearman, M. S. (2004). Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. The Journal of Biological Chemistry, 279, 43419–43426.Google Scholar
  12. Beher, D. & Graham, S. L. (2005). Protease inhibitors as potential disease-modifying therapeutics for Alzheimer's disease. Expert Opinion on Investigational Drugs, 14, 1385–1409.CrossRefPubMedGoogle Scholar
  13. Bernardo, A., Levi, G., & Minghetti, L. (2000). Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. The European Journal of Neuroscience, 12, 2215–2223.CrossRefPubMedGoogle Scholar
  14. Bernardo, A., & Minghetti, L. (2006). PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Current Pharmaceutical Design, 12, 93–109.CrossRefPubMedGoogle Scholar
  15. Cole, G. M., Morihara, T., Lim, G. P., Yang, F., Begum, A., & Frautschy, S. A. (2004). NSAID and antioxidant prevention of Alzheimer's disease: Lessons from in vitro and animal models. Annals of the New York Academy of Sciences, 1035, 68–84.CrossRefPubMedGoogle Scholar
  16. Combrinck, M., Williams, J., De Berardinis, M. A., Warden, D., Puopolo, M., Smith, A. D., et al. (2006). Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 85–88.CrossRefPubMedGoogle Scholar
  17. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., & Landreth, G. E. (2000). Inflammatory mechanisms in Alzheimer's disease: Inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. The Journal of Neuroscience, 20, 558–567.PubMedGoogle Scholar
  18. DeMattos, R. B., O'Dell M, A., Parsadanian, M., Taylor, J. W., Harmony, J. A., Bales, K. R., et al. (2002). Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 99, 10843–10848.CrossRefPubMedGoogle Scholar
  19. Dembo, G., Park, S. B., & Kharasch, E. D. (2005). Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology, 102, 409–415.CrossRefPubMedGoogle Scholar
  20. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398, 518–522.CrossRefPubMedGoogle Scholar
  21. DiCarlo, G., Wilcock, D., Henderson, D., Gordon, M., & Morgan, D. (2001). Intrahippocampal LPS injections reduce Abeta load in APP+PS1 transgenic mice. Neurobiology of Aging, 22, 1007–1012.CrossRefPubMedGoogle Scholar
  22. Eikelenboom, P., & Stam, F. C. (1982). Immunglobulins and complement factors in senile plaques: an immunperoxidase study. Acta Neuropathologica, 57, 239–242.CrossRefPubMedGoogle Scholar
  23. Eriksen, J. L., Sagi, S. A., Smith, T. E., Weggen, S., Das, P., McLendon, D. C., et al. (2003). NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. The Journal of Clinical Investigation, 112, 440–449.PubMedGoogle Scholar
  24. Evans, A. M. (1996). Pharmacodynamics and pharmacokinetics of the profens: Enantioselectivity, clinical implications, and special reference to S (+)-ibuprofen. Journal of Clinical Pharmacology, 36, 7S–15S.PubMedGoogle Scholar
  25. Faulkner, J. R., Herrmann, J. E., Woo, M. J., Tansey, K. E., Doan, N. B., & Sofroniew, M. V. (2004). Reactive astrocytes protect tissue and preserve function after spinal cord injury. The Journal of Neuroscience, 24, 2143–2155.CrossRefPubMedGoogle Scholar
  26. Gasparini, L., Ongini, E., & Wenk, G. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: Old and new mechanisms of action. Journal of Neurochemistry, 91, 521–536.CrossRefPubMedGoogle Scholar
  27. Gasparini, L., Rusconi, L., Xu, H., Del Soldato, P., & Ongini, E. (2004). Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. Journal of Neurochemistry, 88, 337–348.PubMedCrossRefGoogle Scholar
  28. Geisslinger, G., Lotsch, J., Menzel, S., Kobal, G., & Brune, K. (1994). Stereoselective disposition of flurbiprofen in healthy subjects following administration of the single enantiomers. British Journal of Clinical Pharmacology, 37, 392–394.PubMedGoogle Scholar
  29. Golde, T. E. (2002). Inflammation takes on Alzheimer disease. Nature Medicine, 8, 936–938.CrossRefPubMedGoogle Scholar
  30. Golde, T. E. (2003). Alzheimer disease therapy: Can the amyloid cascade be halted? The Journal of Clinical Investigation, 111, 11–18.PubMedGoogle Scholar
  31. Golde, T. E., Eckman, C. B., & Younkin, S. G. (2000). Biochemical detection of Abeta isoforms: Implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochimica et Biophysica Acta, 1502, 172–187.PubMedGoogle Scholar
  32. Griffin, W. S., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., et al. (1989). Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 86, 7611–7615.CrossRefPubMedGoogle Scholar
  33. Haass, C. (2004). Take five-BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. The EMBO Journal, 23, 483–488.CrossRefPubMedGoogle Scholar
  34. Halliday, G. M., Shepherd, C. E., McCann, H., Reid, W. G., Grayson, D. A., Broe, G. A., et al. (2000). Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Archives of Neurology, 57, 831–836.CrossRefPubMedGoogle Scholar
  35. He, T. C., Chan, T. A., Vogelstein, B., & Kinzler, K. W. (1999). PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 99, 335–345.CrossRefPubMedGoogle Scholar
  36. Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Hanke, A., Dewachter, I., Kuiperi, C., et al. (2005). Acute treatment with the PPAR{gamma} agonist pioglitazone and ibuprofen reduces glial inflammation and A{beta}1–42 levels in APPV717I transgenic mice. Brain, 128, 1442–1453.CrossRefPubMedGoogle Scholar
  37. Heppner, F. L., Greter, M., Marino, D., Falsig, J., Raivich, G., Hovelmeyer, N., et al. (2005). Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Medicine, 11, 146–152.CrossRefPubMedGoogle Scholar
  38. Hirohata, M., Ono, K., Naiki, H., & Yamada, M. (2005). Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. Neuropharmacology, 49, 1088–1099.CrossRefPubMedGoogle Scholar
  39. Ho, G. J., Drego, R., Hakimian, E., & Masliah, E. (2005). Mechanisms of cell signaling and inflammation in Alzheimer's disease. Current Drug Targets. Inflammation and Allergy, 4, 247–256.CrossRefPubMedGoogle Scholar
  40. Hoozemans, J. J., Veerhuis, R., Rozemuller, A. J., & Eikelenboom, P. (2003). Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease. Current Drug Targets, 4, 461–468.CrossRefPubMedGoogle Scholar
  41. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.CrossRefPubMedGoogle Scholar
  42. Iadecola, C., & Gorelick, P. B. (2005). The Janus face of cyclooxygenase-2 in ischemic stroke: Shifting toward downstream targets. Stroke, 36, 182–185.CrossRefPubMedGoogle Scholar
  43. Imbimbo, B. P. (2004). The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer's disease. Expert Opinion on Investigational Drugs, 13, 1469–1481.CrossRefPubMedGoogle Scholar
  44. in t' Veld, B. A., Ruitenberg, A., Hofman, A., Launer, L. J., van Duijn, C. M., Stijnen, T., et al. (2001). Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. The New England Journal of Medicine, 345, 1515–1521.Google Scholar
  45. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron, 13, 45–53.CrossRefPubMedGoogle Scholar
  46. Jantzen, P. T., Connor, K. E., DiCarlo, G., Wenk, G. L., Wallace, J. L., Rojiani, A. M., et al. (2002). Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. The Journal of Neuroscience, 22, 2246–2254.PubMedGoogle Scholar
  47. Jaradat, M. S., Wongsud, B., Phornchirasilp, S., Rangwala, S. M., Shams, G., Sutton, M., et al. (2001). Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochemical Pharmacology, 62, 1587–1595.CrossRefPubMedGoogle Scholar
  48. Jarrett, J. T., Berger, E. P., & Lansbury, P. T., Jr. (1993). The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry, 32, 4693–4697.CrossRefPubMedGoogle Scholar
  49. Jiang, C., Ting, A. T., & Seed, B. (1998). PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 391, 82–86.CrossRefPubMedGoogle Scholar
  50. Kukar, T., Murphy, M. P., Eriksen, J. L., Sagi, S. A., Weggen, S., Smith, T. E., et al. (2005). Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nature Medicine, 11, 545–550.CrossRefPubMedGoogle Scholar
  51. Lanz, T. A., Fici, G. J., & Merchant, K. M. (2005). Lack of specific amyloid-{beta}(1–42) suppression by nonsteroidal anti-inflammatory drugs in young, plaque-free Tg2576 mice and in guinea pig neuronal cultures. The Journal of Pharmacology and Experimental Therapeutics, 312, 399–406.CrossRefPubMedGoogle Scholar
  52. Launer, L. (2003). Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer's disease: dissecting the epidemiological evidence. Drugs, 63, 731–739.CrossRefPubMedGoogle Scholar
  53. Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., & Kliewer, S. A. (1997). Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. The Journal of Biological Chemistry, 272, 3406–3410.CrossRefPubMedGoogle Scholar
  54. Lehrke, M., & Lazar, M. A. (2005). The many faces of PPARgamma. Cell, 123, 993–999.CrossRefPubMedGoogle Scholar
  55. Leuchtenberger, S., Beher, D., & Weggen, S. (2006). Selective modulation of Abeta42 production: Non-steroidal anti-inflammatory drugs (NSAIDs) and beyond. Current Pharmaceutical Design, 33, 4337–4355.CrossRefGoogle Scholar
  56. Leuchtenberger, S., Kummer, M. P., Kukar, T., Czirr, E., Teusch, N., Sagi, S. A., et al. (2006). Inhibitors of Rho-kinase modulate amyloid-beta (Abeta) secretion but lack selectivity for Abeta42. Journal of Neurochemistry, 96, 355–365.CrossRefPubMedGoogle Scholar
  57. Liang, X., Wang, Q., Hand, T., Wu, L., Breyer, R. M., Montine, T. J., et al. (2005). Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. The Journal of Neuroscience, 25, 10180–10187.CrossRefPubMedGoogle Scholar
  58. Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., et al. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. The Journal of Neuroscience, 20, 5709–5714.PubMedGoogle Scholar
  59. Lleo, A., Berezovska, O., Herl, L., Raju, S., Deng, A., Bacskai, B. J., et al. (2004). Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nature Medicine, 10, 1065–1066.CrossRefPubMedGoogle Scholar
  60. Mackenzie, I. R., & Munoz, D. G. (1998). Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology, 50, 986–990.PubMedGoogle Scholar
  61. Mackenzie, I. R., & Munoz, D. G. (2001). Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Archives of Neurology, 58, 517–519.CrossRefPubMedGoogle Scholar
  62. Manabe, Y., Anrather, J., Kawano, T., Niwa, K., Zhou, P., Ross, M. E., et al. (2004). Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Annals of Neurology, 55, 668–675.CrossRefPubMedGoogle Scholar
  63. Matsuoka, Y., Picciano, M., Malester, B., LaFrancois, J., Zehr, C., Daeschner, J. M., et al. (2001). Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease. The American Journal of Pathology, 158, 1345–1354.PubMedGoogle Scholar
  64. McGeer, P. L. (2000). Cyclo-oxygenase-2 inhibitors: rationale and therapeutic potential for Alzheimer's disease. Drugs Aging, 17, 1–11.CrossRefPubMedGoogle Scholar
  65. McGeer, P. L., Itagaki, S., Tago, H., & McGeer, E. G. (1987). Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neuroscience Letters, 79, 195–200.CrossRefPubMedGoogle Scholar
  66. McGeer, P. L., McGeer, E., Rogers, J., & Sibley, J. (1990). Anti-inflammatory drugs and Alzheimer disease. Lancet, 335, 1037.CrossRefPubMedGoogle Scholar
  67. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 47, 191–199.CrossRefPubMedGoogle Scholar
  68. Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology and Experimental Neurology, 63, 901–910.PubMedGoogle Scholar
  69. Monsonego, A., & Weiner, H. L. (2003). Immunotherapeutic approaches to Alzheimer's disease. Science, 302, 834–838.CrossRefPubMedGoogle Scholar
  70. Morihara, T., Chu, T., Ubeda, O., Beech, W., & Cole, G. M. (2002). Selective inhibition of Abeta42 production by NSAID R-enantiomers. Journal of Neurochemistry, 83, 1009–1012.CrossRefPubMedGoogle Scholar
  71. Morihara, T., Teter, B., Yang, F., Lim, G. P., Boudinot, S., Boudinot, F. D., et al. (2005). Ibuprofen suppresses interleukin-1beta induction of pro-amyloidogenic alpha1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer's models. Neuropsychopharmacology, 30, 1111–1120.CrossRefPubMedGoogle Scholar
  72. Mucke, L., Yu, G. Q., McConlogue, L., Rockenstein, E. M., Abraham, C. R., & Masliah, E. (2000). Astroglial expression of human alpha(1)-antichymotrypsin enhances alzheimer-like pathology in amyloid protein precursor transgenic mice. The American Journal of Pathology, 157, 2003–2010.PubMedGoogle Scholar
  73. Nagele, R. G., Wegiel, J., Venkataraman, V., Imaki, H., & Wang, K. C. (2004). Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiology of Aging, 25, 663–674.CrossRefPubMedGoogle Scholar
  74. Netland, E. E., Newton, J. L., Majocha, R. E., & Tate, B. A. (1998). Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiology of Aging, 19, 201–204.CrossRefPubMedGoogle Scholar
  75. Ni, C. Y., Murphy, M. P., Golde, T. E., & Carpenter, G. (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science, 294, 2179–2181.CrossRefPubMedGoogle Scholar
  76. Nilsson, L. N., Bales, K. R., DiCarlo, G., Gordon, M. N., Morgan, D., Paul, S. M., et al. (2001). Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer's disease. The Journal of Neuroscience, 21, 1444–1451.PubMedGoogle Scholar
  77. Peretto, I., Radaelli, S., Parini, C., Zandi, M., Raveglia, L. F., Dondio, G., et al. (2005). Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of beta-amyloid(1)(-)(42) secretion. Journal of Medicinal Chemistry, 48, 5705–5720.CrossRefPubMedGoogle Scholar
  78. Potter, H., Wefes, I. M., & Nilsson, L. N. (2001). The inflammation-induced pathological chaperones ACT and apo-E are necessary catalysts of Alzheimer amyloid formation. Neurobiology of Aging, 22, 923–930.CrossRefPubMedGoogle Scholar
  79. Prosperi, C., Scali, C., Barba, M., Bellucci, A., Giovannini, M. G., Pepeu, G., et al. (2004). Comparison between flurbiprofen and its nitric oxide-releasing derivatives HCT-1026 and NCX-2216 on Abeta(1–42)-induced brain inflammation and neuronal damage in the rat. International Journal of Immunopathology and Pharmacology, 17, 317–330.PubMedGoogle Scholar
  80. Quinn, J., Montine, T., Morrow, J., Woodward, W. R., Kulhanek, D., & Eckenstein, F. (2003). Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. Journal of Neuroimmunology, 137, 32–41.CrossRefPubMedGoogle Scholar
  81. Reines, S. A., Block, G. A., Morris, J. C., Liu, G., Nessly, M. L., Lines, C. R., et al. (2004). Rofecoxib: No effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology, 62, 66–71.PubMedGoogle Scholar
  82. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 391, 79–82.CrossRefPubMedGoogle Scholar
  83. Rogers, J., Cooper, N. R., Webster, S., Schultz, J., McGeer, P. L., Styren, S. D., et al. (1992). Complement activation by beta-amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 89, 10016–10020.CrossRefPubMedGoogle Scholar
  84. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., et al. (1993). Clinical trial of indomethacin in Alzheimer's disease. Neurology, 43, 1609–1611.PubMedGoogle Scholar
  85. Sagi, S. A., Weggen, S., Eriksen, J., Golde, T. E., & Koo, E. H. (2003). The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. The Journal of Biological Chemistry, 278, 31825–31830.CrossRefPubMedGoogle Scholar
  86. Sainati, S. M., Ingram, D. M., Talwalker, S., & Geis, G. (2000). Results of a double-blind, randomized placebo-controlled study of celecoxib in the treatment of progression of Alzheimer's disease. Sixth International Stockholm/Springfield Symposium on Advances in Alzheimer Therapy, Stockholm, Sweden, 180.Google Scholar
  87. Sastre, M., Dewachter, I., Landreth, G. E., Willson, T. M., Klockgether, T., van Leuven, F., et al. (2003). Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. The Journal of Neuroscience, 23, 9796–9804.PubMedGoogle Scholar
  88. Sastre, M., Dewachter, I., Rossner, S., Bogdanovic, N., Rosen, E., Borghgraef, P., et al. Nonsteroidal anti-inflammatory drugs repress {beta}-secretase gene promoter activity by the activation of PPAR{gamma}. Proceedings of the National Academy of Sciences of the United States of America, 103, 443–448.Google Scholar
  89. Sastre, M., Klockgether, T., & Heneka, M. T. (2006). Contribution of inflammatory processes to Alzheimer's disease: Molecular mechanisms. International Journal of Developmental Neuroscience, 24, 167–176.CrossRefPubMedGoogle Scholar
  90. Scharf, S., Mander, A., Ugoni, A., Vajda, F., & Christophidis, N., (1999). A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease. Neurology, 53, 197–201.PubMedGoogle Scholar
  91. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimers disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimers disease. Nature Medicine, 2, 864–869.CrossRefPubMedGoogle Scholar
  92. Schutz, B., Reimann, J., Dumitrescu-Ozimek, L., Kappes-Horn, K., Landreth, G. E., Schurmann, B., et al. (2005). The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. The Journal of Neuroscience, 25, 7805–7812.CrossRefPubMedGoogle Scholar
  93. Selkoe, D. J. (2001). Alzheimer's disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.PubMedGoogle Scholar
  94. Selkoe, D. J. (2001). Clearing the brain's amyloid cobwebs. Neuron, 32, 177–180.CrossRefPubMedGoogle Scholar
  95. Selkoe, D. J. (2002). Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. The Journal of Clinical Investigation, 110, 1375–1381.PubMedGoogle Scholar
  96. Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56, 387–437.CrossRefPubMedGoogle Scholar
  97. Stewart, W. F., Kawas, C., Corrada, M., & Metter, E. J. (1997). Risk of Alzheimer's disease and duration of NSAID use. Neurology, 48, 626–632.PubMedGoogle Scholar
  98. Sung, S., Yang, H., Uryu, K., Lee, E. B., Zhao, L., Shineman, D., et al. (2004). Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer's disease. The American Journal of Pathology, 165, 2197–2206.PubMedGoogle Scholar
  99. Szekely, C. A., Thorne, J. E., Zandi, P. P., Ek, M., Messias, E., Breitner, J. C., et al. (2004). Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer's disease: A systematic review. Neuroepidemiology, 23, 159–169.CrossRefPubMedGoogle Scholar
  100. Tabet, N., & Feldman, H. (2002). Indomethacin for the treatment of Alzheimer's disease patients. Cochrane Database of Systematic Reviews, CD003673.Google Scholar
  101. Takahashi, Y., Hayashi, I., Tominari, Y., Rikimaru, K., Morohashi, Y., Kan, T., et al. (2003). Sulindac sulfide is a noncompetitive gamma-secretase inhibitor that preferentially reduces Abeta 42 generation. The Journal of Biological Chemistry, 278, 18664–18670.CrossRefPubMedGoogle Scholar
  102. Tegeder, I., Pfeilschifter, J., & Geisslinger, G. (2001). Cyclooxygenase-independent actions of cyclooxygenase inhibitors. The FASEB Journal, 15, 2057–2072.CrossRefPubMedGoogle Scholar
  103. Thal, L. J., Ferris, S. H., Kirby, L., Block, G. A., Lines, C. R., Yuen, E., et al. (2005). A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology, 30, 1204–1215.CrossRefPubMedGoogle Scholar
  104. Thomas, T., Nadackal, T. G., & Thomas, K. (2001). Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-beta aggregation. Neuroreport, 12, 3263–3267.CrossRefPubMedGoogle Scholar
  105. Van Gool, W. A., Weinstein, H. C., Scheltens, P., & Walstra, G. J. (2001). Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: An 18-month randomised, double-blind, placebo-controlled study. Lancet, 358, 455–460.CrossRefPubMedGoogle Scholar
  106. Wancata, J., Musalek, M., Alexandrowicz, R., & Krautgartner, M. (2003). Number of dementia sufferers in Europe between the years 2000 and 2050. European Psychiatry, 18, 306–313.CrossRefPubMedGoogle Scholar
  107. Warner, T. D., & Mitchell, J. A. (2004). Cyclooxygenases: New forms, new inhibitors, and lessons from the clinic. The FASEB Journal, 18, 790–804.CrossRefPubMedGoogle Scholar
  108. Wechter, W. J. (1994). Drug chirality: On the mechanism of R-aryl propionic acid class NSAIDs. Epimerization in humans and the clinical implications for the use of racemates. Journal of Clinical Pharmacology, 34, 1036–1042.PubMedGoogle Scholar
  109. Weggen, S., Eriksen, J. L., Das, P., Sagi, S. A., Wang, R., Pietrzik, C. U., et al. (2001). A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 414, 212–216.CrossRefPubMedGoogle Scholar
  110. Weggen, S., Eriksen, J. L., Sagi, S. A., Pietrzik, C. U., Golde, T. E., & Koo, E. H. (2003). Abeta42-lowering nonsteroidal anti-inflammatory drugs preserve intramembrane cleavage of the amyloid precursor protein (APP) and ErbB-4 receptor and signaling through the APP intracellular domain. The Journal of Biological Chemistry, 278, 30748–30754.CrossRefPubMedGoogle Scholar
  111. Weggen, S., Eriksen, J. L., Sagi, S. A., Pietrzik, C. U., Ozols, V., Fauq, A., et al. (2003). Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. The Journal of Biological Chemistry, 278, 31831–31837.CrossRefPubMedGoogle Scholar
  112. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & Delon, M. R. (1982). Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239.CrossRefPubMedGoogle Scholar
  113. Wilquet, V., & De Strooper, B. (2004). Amyloid-beta precursor protein processing in neurodegeneration. Current Opinion in Neurobiology, 14, 582–588.CrossRefPubMedGoogle Scholar
  114. Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., et al. (2003). Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nature Medicine, 9, 453–457.CrossRefPubMedGoogle Scholar
  115. Wyss-Coray, T., & Mucke, L. (2002). Inflammation in neurodegenerative disease–a double-edged sword. Neuron, 35, 419–432.CrossRefPubMedGoogle Scholar
  116. Wyss-Coray, T., Yan, F., Lin, A. H., Lambris, J. D., Alexander, J. J., Quigg, R. J., et al. (2002). Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 10837–10842.CrossRefPubMedGoogle Scholar
  117. Xiang, Z., Ho, L., Yemul, S., Zhao, Z., Qing, W., Pompl, P., et al. (2002). Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer's disease neuropathology. Gene Expression, 10, 271–278.PubMedGoogle Scholar
  118. Yan, Q., Zhang, J., Liu, H., Babu-Khan, S., Vassar, R., Biere, A. L., et al. (2003). Anti-inflammatory drug therapy alters {beta}-amyloid processing and deposition in an animal model of Alzheimer's disease. The Journal of Neuroscience, 23, 7504–7509.PubMedGoogle Scholar
  119. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. The Journal of Biological Chemistry, 280, 5892–5901.CrossRefPubMedGoogle Scholar
  120. Yankner, B. A. (1996). Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron, 16, 921–932.CrossRefPubMedGoogle Scholar
  121. Younkin, S. G. (1998). The role of A beta 42 in Alzheimer's disease. Journal of Physiology, Paris, 92, 289–292.CrossRefPubMedGoogle Scholar
  122. Zandi, P. P., Anthony, J. C., Hayden, K. M., Mehta, K., Mayer, L., & Breitner, J. C. (2002). Reduced incidence of AD with NSAID but not H2 receptor antagonists: The Cache County Study. Neurology, 59, 880–886.PubMedGoogle Scholar
  123. Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J. W., Wu, X., et al. (2003). Nonsteroidal anti-inflammatory drugs can lower amyloidogenic A{beta}42 by inhibiting Rho. Science, 302, 1215–1217.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sascha Weggen
    • 1
  • Eva Czirr
    • 1
  • Stefanie Leuchtenberger
    • 1
  • Jason Eriksen
    • 2
  1. 1.Emmy Noether Research GroupJohannes Gutenberg UniversityGermany
  2. 2.Department of NeuroscienceMayo Clinic College of MedicineJacksonvilleUSA

Personalised recommendations