Skip to main content

Neuroinflammation, Alzheimer Disease, and Other Aging Disorders

  • Chapter
Pharmacological Mechanisms in Alzheimer's Therapeutics

Neuroinflammation is defined as a localized response to CNS tissue damage. It is characterized by activated microglia attacking the injury source, activated astrocytes limiting the area of involvement, and resident brain cells, including neurons, generating multiple inflammatory mediators. It may expand to involve invasion by leukocytes and serum factors. Studies on Alzheimer disease (AD) over the past two decades have provided much new information about chronic neuroinflammation. This information may have relevance not only to many neurological disorders but also, by extension and with some modification, to such important diseases as atherosclerosis, heart disease, and macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aihara, M., Ishii, S., Kume, K., & Shimizu, T. (2000). Interaction between neurone and microglia mediated by platelet-activating factor. Genes to Cells, 5, 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Aisen, P. S., Schafer, K. A., Grundman, M., Pfeiffer, E., Sano, M., Davis, K. L., et al. (2003). Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. The Journal of the American Medical Association, 289, 2819–2826.

    Article  CAS  Google Scholar 

  • Aisen, P. S., Schmeidler, J., & Pasinetti, G. M. (2002). Randomized pilot study of nimesulide treatment in Alzheimer's disease. Neurology, 58, 1050–1054.

    PubMed  CAS  Google Scholar 

  • Akiyama, H., Itagaki, S., & McGeer, P. L. (1988). Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. Journal of Neuroscience Research, 20, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, H., & McGeer, P. L, (1990). Brain microglia constitutively express b-2 integrins. Journal of Neuroimmunology, 30, 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Alldred, A. (2001). Etanercept in rheumatoid arthritis. Expert Opinion in Pharmacotherapy, 1, 1137–1148.

    Article  Google Scholar 

  • Arai, H., Suzuki, T., Sasaki, H., Hanawa, T., Toriizuka, K., & Yamada, H. (2000). A new interventional strategy for Alzheimer's disease by Japanese herbal medicine. Nippon Ronen Igakkai Zasshi-Japanese Journal of Geriatrics, 37, 212–215.

    PubMed  CAS  Google Scholar 

  • Banati, R. B., Gehrmann, J., Schubert, P., & Kreutzberg, G. W. (1993). Cytotoxicity of microglia. Glia, 7, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Banati, R. B., Myers, R., & Kreutzberg, G. W. (1997). PK (‘peripheral benzodiazepine’)—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. Journal of Neurocytology, 26, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Beneveniste, E. N., Nguyen, V. T., & O'Keefe, G. M. (2001). Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochemistry International, 39, 381–391.

    Article  Google Scholar 

  • Biber, K., Dijkstra, I., Trebst, C., De Groot, C. J., Ransohoff, R. M., & Boddeke, H. W. (2002). Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience, 112, 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Biber, K., Sauter, A., Brouwer, N., Copray, S. C., & Boddeke, H. W. (2001). Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia, 34, 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Bodles, A. M., & Barger, S. W. (2005). Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiology of Aging, 26, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Bok, D. (2005). Evidence for an inflammatory response in age-related mascular degeneration gains new support. Proceedings of the National Academy of Sciences of the United States of America, 102, 7053–70544.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., & Kanski, J. (2001). Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mechanisms of Aging and Development, 122, 945–962.

    Article  CAS  Google Scholar 

  • Chapman, G. A., Moores, K., Harrison, D., Campbell, C. A., Stewart, B. R., & Strijbos, P. J. (2000). Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. Journal of Neuroscience, 20, RC87.

    PubMed  CAS  Google Scholar 

  • Cheeran, M. C., Hu, S., Sheng, W. S., Peterson, P. K., & Lokensgard, J. R. (2003). CXCL10 production from cytomegalovirus-stimulated microglia is regulated by both human and viral interleukin-10. Journal of Virology, 77, 4502–4515.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Zhang, S. M., Herman, M. A., Schwarzschild, M. A., Willett, W. C., Colditz, G. A., et al. (2003). Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Archives of Neurology, 60, 1059–1064.

    Article  PubMed  Google Scholar 

  • Colton, C. A., & Gilbert, D. I. (1987). Production of superoxide anions by a CNS macrophage, the microglia. FEBS Letters, 223, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Columba-Cabezas, S., Serafini, B., Ambrosini, E., Sanchez, M., Penna, G., Adorini, L., et al. (2002). Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: Implications for disease regulation. Journal of Neuroimmunology, 130, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Cui, Y. H., Le, Y., Gong, W., Proost, P., Van Damme, J., Murphy, W. J., et al. (2002). Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. Journal of Immunology, 168, 434–442.

    CAS  Google Scholar 

  • Cui, Y., Le, Y., Yazawa, H., Gong, W., & Wang, J. M. (2002). Potential role of the formyl peptide receptor-like 1 (FPRL1) in inflammatory aspects of Alzheimer's disease. Journal of Leukocyte Biology, 72, 628–635.

    PubMed  CAS  Google Scholar 

  • Cui, Y. H., Le, Y., Zhang, X., Gong, W., Abe, K., Sun, R., et al. (2002). Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1–42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiology of Disease, 10, 366–377.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., & Robertson, D. M. (Eds.). (1991). Textbook of neuropathology (2nd ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Del Rio Hortega, P. (1919). El ‘tercer elemento’ de los centros nerviosos. Poder fagocitario y movilidad de la microglia. Bol. Soc. Esp. Biol. Ano. ix, 154–166.

    Google Scholar 

  • De Simone, R., Ajmone-Cat, M. A., & Minghetti, L. (2004). Atypical antiinflammatory activation of microglia induced by apoptotic neurons. Molecular Neurobiology, 19, 197–212.

    Article  Google Scholar 

  • Feagan, B. G., Enns, R., Fedorak, R. N., Panaccione, R., Pare, P., Steinhart, A. H., et al. (2001). Infliximab for the treatment of Crohn's disease: Efficacy, safety and pharmacoeconomics. Canadian Journal of Clinical Pharmacology, 8, 188–198.

    PubMed  CAS  Google Scholar 

  • Finch, C. E. (2005). Developmental origins of aging in brain and blood vessels: An overview. Neurobiology of Aging, 26, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Firuzi, O., & Pratico, D. (2006). Coxibs and Alzheimer's disease: Should they stay or should they go? Annals of Neurology, 59, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G., Maru, S., Loughlin, J., Romero, I. A., & Male, D. (2003). Regulation of chemokine receptor expression in human microglia and astrocytes. Journal of Neuroimmunology, 136, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Forstreuter, F., Lucius, R., & Mentlein, R. (2002). Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. Journal of Neuroimmunology, 132, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Gao, H. M., Liu, B., & Hong, J. S. (2003). Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. Journal of Neuroscience, 23, 6181–6187.

    PubMed  CAS  Google Scholar 

  • Giulian, D., Haverkamp, L. J., Yu, J. H., Harshin, W. L., Li, J., Kirkpatrick, J., et al. (1996). Specific domains of b-amyloid from Alzheimer plaque elicit neuronal killing in human microglia. Journal of Neuroscience, 16, 6021–6037.

    PubMed  CAS  Google Scholar 

  • Gould, D. J., & Goshgarian, H. G. (1999). The effects of mitotic inhibition on the spinal cord response to the superimposed injuries of spinal cord hemisection and peripheral axotomy. Experimental Neurology, 158, 394–402.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, K., & Clair, E. W. (2000). Tumour necrosis factor-alpha blockade: A new era for the effective management of rheumatoid arthritis. Expert Opinion in Pharmacotherapy, 1, 1041–1052.

    Article  CAS  Google Scholar 

  • Haymaker, W., & Adams, R. D. (Eds.), (1982). Histology and histopathology of the nervous system. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Hanke, A., Dewachter, I., Kuiperi, C., et al. (2005). Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1–42 levels in APPV717I transgenic mice. Brain, 128, 1442–1453.

    Article  PubMed  Google Scholar 

  • Henkel, J. S., Engelhardt, J. I., Siklos, L., Simpson, E. P., Kim, S. H., Pan, T., et al. (2004). Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Annals of Neurology, 55, 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Honda, S., Sasaki, Y., Ohsawa, K., Imai, Y., Nakamura, Y., Inoue, K., et al. (2001). Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. Journal of Neuroscience, 21, 1975–1982.

    PubMed  CAS  Google Scholar 

  • Hurley, S. D., & Coleman, P. D. (2003). Facial nerve axotomy in aged and young adult rats: analysis of the glial response. Neurobiology of Aging, 24, 511–518.

    Article  PubMed  Google Scholar 

  • Jantzen, P. T., Connor, K. E., DiCarlo, G., Wenk, G. L., Wallace, J. L., Rojiani, A. M., et al. (2002). Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. Journal of Neuroscience, 22, 2246–2254.

    PubMed  CAS  Google Scholar 

  • Johnstone, M., Gearing, A. J., & Miller, K. M. (1999). A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. Journal of Neuroimmunology, 93, 182–193.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata, T., Akiyama, H., Yamada, T., & McGeer, P. L. (1992). Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. American Journal of Pathology, 140, 691–707.

    PubMed  CAS  Google Scholar 

  • Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., et al. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80, 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., Bissonnette, C. J., & McGeer, P. L. (2005). Modulation of human microglia and THP-1 cell toxicity by cytokines endogenous to the nervous system. Neurobiology of Aging, 26, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., & McGeer, P. L. (1994). Rat brain microglia and peritoneal macrophages show similar responses to respiratory burst stimulants. Journal of Neuroimmunology, 53, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., & McGeer, P. L. (2000). Interaction of various intrasignalling mechanisms involved in mononuclear phagocyte toxicity towards neuronal cells. Journal of Leukocyte Biology, 67, 127–133.

    PubMed  CAS  Google Scholar 

  • Klegeris, A., & McGeer, P. L. (2005). Non-steroidal antiinflammatory drugs (NSAIDs) and other antiinflammatory agents in the treatment of neurodegenerative disease. Current Alzheimer Research, 2, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., Walker, D. G., & McGeer, P. L. (1997). Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. Journal of Neuroimmunology, 78, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho, M., & Koistinaho, J. (2002). Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia, 40, 175–183.

    Article  PubMed  Google Scholar 

  • Krogsgaard, M., Wucherpfennig, K. W., Cannella, B., Hansen, B. E., Svejgaard, A., Pyrdol, J., et al. (2000). Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85–99 complex. Journal of Experimental Medicine, 191, 1395–1412.

    Article  PubMed  CAS  Google Scholar 

  • Kuehn, B. M. (2005). Inflammation suspected in eye disorders. The Journal of American Medical Association, 294, 31–32.

    Article  CAS  Google Scholar 

  • Lauderback, C. M., Hackett, J. M., Huang, F. F., Keller, J. N., Szweda, L. I., Markesbery, W. R., et al. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: The role of A beta 1–42. Journal of Neurochemistry, 78, 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., et al. (2000). Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. Journal of Neuroscience, 20, 5709–5714.

    PubMed  CAS  Google Scholar 

  • Luber-Narod, J., & Rogers, J. (1988). Immune system associated antigens expressed by cells of the human central nervous system. Neuroscience Letters, 94, 265–273.

    Google Scholar 

  • Lue, L. F., Walker, D. G., Brachova, L., Beach, T. G., Rogers, J., Schmidt, A. M., et al. (2001). Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: Identification of a cellular activation mechanism. Experimental Neurology, 171, 29–45.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S., Vincent, J. P. & Mazella, J. (2003). Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. Journal of Neuroscience, 23, 1198–1205.

    PubMed  CAS  Google Scholar 

  • Mattsson, P., Aldskogius, H., & Svensson, M. (1999). Nimodipine-induced improved survival rate of facial motor neurons following intracranial transection of the facial nerve in the adult rat. Journal of Neurosurgery, 90, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, D. R., Brunden, K. R., & Landreth, G. E. (1997). Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. Journal of Neuroscience, 17, 2284–2294.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., Akiyama, H., Kawamata, T., Yamada, T., Walker, D. G., & Ishii, T. (1992). Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. Journal of Neuroscience Research, 31, 428–442.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology, 38, 1285–1291.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., Itagaki, S., & McGeer, E. G. (1988). Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathology, 76, 550–557.

    Article  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (1995). The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative disease. Brain Research Reviews, 21, 195–218.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (2001). Inflammation, autotoxicity and Alzheimer disease. Neurobiology of Aging, 22, 799–809.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (2004a). Inflammation and the degenerative diseases of aging. Annals of the New York Academy of Science, 1035, 104–116.

    Article  CAS  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (2004b). Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism and Related Disorders, 10, S3–S7.

    Article  PubMed  Google Scholar 

  • McGeer, P. L. & Sibley, J. (2005). Sparing of age-related macular degeneration in rheumatoid arthritis. Neurobiology of Aging, 26, 1199–1203.

    Article  PubMed  Google Scholar 

  • McGeer, E. G., Yasojima, K., Schwab, C., & McGeer, P. L. (2001). The pentraxins: possible role in Alzheimer's disease and other innate inflammatory disorders. Neurobiology of Aging, 22, 843–848.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, M. K., Vainio, P. J., & Tuominen, R. K. (1997). Role of protein kinase C in microglia-induced neurotoxicity in mesencephalic cultures. Journal of Neuropathology and Experimental Neurology, 56, 301–307.

    Article  Google Scholar 

  • Metchnikoff, E. (1892). Lecons sur la pathologie comparée de l'inflammation. Paris: Masson.

    Google Scholar 

  • Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology, 73, 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, C. A., Richt, J. A., Meyermann, R., Deininger, M., & Schluesener, H. (2003). Accumulation of the proinflammatory cytokine endothelial-monocyte-activating polypeptide II in ramified microglial cells in brains of Borna virus infected Lewis rats. Neuroscience Letters, 339, 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, M., Tanimukai, S., Yagi, K., Saito, N., Taniguchi, T., Terashima, A., et al. (2001). Amyloid beta protein activates PKC-delta and induces translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. Neurochemistry International, 38, 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Neuroinflammation Working Group. (2000). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21, 383–421.

    Article  Google Scholar 

  • Nolan, Y., Martin, D., Campbell, V. A., & Lynch, M. A. (2004). Evidence of a protective effect of phosphatidyl-containing liposojmes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus. Journal of Neurobiology, 151, 12–23.

    CAS  Google Scholar 

  • Nolte, C., Kirchhoff, F., & Kettenmann, H. (1997). Epidermal growth factor is a motility factor for microglial cells in vitro: Evidence for EGF receptor expression. European Journal of Neuroscience, 9, 1690–1698.

    Article  PubMed  CAS  Google Scholar 

  • Pelaez, B., Blazquez, J. L., Pastor, F. E., Sanchez, A., & Amat, P. (1999). Lectin histochemistry and ultrastructure of microglial response to monosodium glutamate-mediated neurotoxicity in the arcuate nucleus. Histology and Histopathology, 14, 165–174.

    PubMed  CAS  Google Scholar 

  • Penfield, W. (1925). Microglia and the process of phagocytosis in gliomas. American Journal of Pathology, 1, 77–89.

    PubMed  CAS  Google Scholar 

  • Pereira, H. A., Ruan, X., & Kumar, P. (2003). Activation of microglia: a neuroinflammatory role for CAP37. Glia, 41, 64–72.

    Article  PubMed  Google Scholar 

  • Pocock, J. M., Liddle, A. C., Hooper, C., Taylor, D. L., Davenport, C. M., & Morgan, S. C. (2002). Activated microglia in Alzheimer's disease and stroke. Ernst Schering Foundation Workshop, 39, 105–132.

    CAS  Google Scholar 

  • Prat, E., Baron, P., Meda, L., Scarpini, E., Galimberti, D., Ardolino, G., et al. (2000). The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with beta-amyloid protein. Neuroscience Letters, 283, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Quigg, R. J., 2002. Use of complement inhibitors in tissue injury. Trends in Molecular Medicine, 9, 430–437.

    Article  Google Scholar 

  • Quinn, J., Montine, T., Morrow, J., Woodward, W. R., Kulhanek, D., & Eckenstein, F. (2003). Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. Journal of Neuroimmunology, 137, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Rappert, A., Biber, K., Nolte, C., Lipp, M., Schubel, A., Lu, B., et al. (2002). Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. Journal of Immunology, 168, 3221–3226.

    CAS  Google Scholar 

  • Reid, D. M., Perry, V. H., Andersson, P. B., & Gordon, S. (1993). Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier. Neuroscience, 56, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Reines, S. A., Block, G. A., Morris, J. C., Liu, G., Nessly, M. L., Lines, C. R., et al. (2004). Rofecoxib: No effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology, 62, 66–71.

    PubMed  CAS  Google Scholar 

  • Rezaie, P., Trillo-Pazos, G., Greenwood, J., Everall, I. P. & Male, D. K. (2002). Motility and ramification of human fetal microglia in culture: An investigation using time-lapse video microscopy and image analysis. Experimental Cell Research, 274, 68–82.

    Article  PubMed  CAS  Google Scholar 

  • Righi, M., Letari, O., Sacerdote, P., Marangoni, F., Miozzo, A., & Nicosia, S. (1995). Myc-immortalized microglial cells express a functional platelet-activating factor receptor. Journal of Neurochemistry, 64, 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Ringheim, G. E. (1995). Mitogenic effects of interleukin-5 on microglia. Neuroscience Letters, 201, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., et al. (1993). Clinical trial of indomethacin in Alzheimer's disease. Neurology, 43, 1609–1611.

    PubMed  CAS  Google Scholar 

  • Rogers, J., Webster, S., Schultz, J., McGeer, P. L., Styren, S., Civin, W. H., et al. (1992). Complement activation by b-amyloid in Alzheimer disease. Proceedings of the. National Academy of Science of the United States of America, 89, 10016–10020.

    Article  CAS  Google Scholar 

  • Ruan, R. S., Leong, S. K., & Yeoh, K. H. (1994). Glial reaction after facial nerve compression in the facial canal of the albino rat. Acta Oto-Laryngologica, 114, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Sainati, S. M., Ingram, D. M., Talwalker, S., & Geis, G. S. (2000). Results of a double-blind, placebo-controlled study of celecoxib for the progression of Alzheimer's disease. Sixth International Stockholm-Springfield Symposium of Advances in Alzheimer Therapy, 180.

    Google Scholar 

  • Scharf, S., Mander, A., Ugoni, A., Vajda, F., & Christophidis, N. (1999). A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer's disease. Neurology, 53, 197–201.

    PubMed  CAS  Google Scholar 

  • Scholl, H. P., Weber, B. H., Nothen, M. M., Wienker, T., & Holz, F. G. (2005). Y402H polymorphism in complement factor H and age-related macular degeneration (AMD). Ophthalmology, 102, 1029–1035.

    Article  CAS  Google Scholar 

  • Schwab, C., Hosokawa, M., & McGeer, P. L. (2004). Transgenic mice overexpressing amyloid beta-protein are an incomplete model of Alzheimer disease. Experimental Neurology, 188, 52–64.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, C. E., Gregory, G. C., Vickers, J. C., & Halliday, G. M. (2005). Novel ‘inflammatory plaque’ pathology in presenilin-1 Alzheimer's disease. Neuropathology and Applied Neurobiology, 31, 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., et al. (2002). Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. Journal of Neuroimmunology, 125, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, S., Lahav, R., Han, J., Kou, S. Y., Banner, L. R., de Pablo, F., et al. (2000). Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. European Journal of Neuroscience, 12, 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik, A. M., Funes, S., Petko, W., & Ringheim, G. E. (2001). IL-4, IL-10 and IL-13 modulate Ab(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. Journal of Neuroimmunology, 113, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Tiffany, H. L., Lavigne, M. C., Cui, Y. H., Wang, J. M., Leto, T. L., Gao, J. L., et al. (2001). Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. Journal of Biological Chemistry, 276, 23645–23652.

    Article  PubMed  CAS  Google Scholar 

  • Van Furth, R. (1982). Current view on the mononuclear phagocyte system. Immunobiology, 161, 178–185.

    PubMed  Google Scholar 

  • van Groen, T., & Kadish, I. (2005). Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Research Reviews, 48, 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., et al. (2005). c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 50, 235–246.

    Article  PubMed  Google Scholar 

  • Wang, J., Crawford, K., Yuan, M., Wang, H., Gorry, P. R., & Gabuzda, D. (2002). Regulation of CC chemokine receptor 5 and CD4 expression and human immunodeficiency virus type 1 replication in human macrophages and microglia by T helper type 2 cytokines. Journal of Infectious Diseases, 185, 885–897.

    Article  PubMed  CAS  Google Scholar 

  • Webster, S., Lue, L. F., Brachova, L., Tenner, A. J., McGeer, P. L., Terai, K., et al. (1997). Molecular and cellular characterization of the membrane attack complex, C5b–9, in Alzheimer's disease. Neurobiology of Aging, 18, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, K. S., Gabbita, S. P., Mou, S., West, M., Pye, Q. N., Markesbery, W. R., et al. (2002). The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide, 6, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Wirjatijasa, F., Dehghani, F., Blaheta, R. A., Korf, H. W., & Hailer, N. P. (2002). Interleukin-4, interleukin-10, and interleukin-1 receptor antagonist but not transforming growth factor-beta induce ramification and reduce adhesion molecule expression of rat microglial cells. Journal of Neuroscience Research, 68, 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H. M., Vorbrodt, A. W., Wegiel, J., Morys, J., & Lossinsky, A. S. (1990). Ultrastructure of the cells forming amyloid fibers in Alzheimer disease and scrapie. American Journal of Medical Genetics-Supplement, 7, 287–297.

    PubMed  CAS  Google Scholar 

  • Yan, Q., Zhang, J., Liu, H., Babu-Khan, S., Vassar, R., Biere, A. L., et al. (2003). Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. Journal of Neuroscience, 23, 7504–7509.

    PubMed  CAS  Google Scholar 

  • Yasojima, K., Schwab, C., McGeer, E. G., & McGeer, P. L. (1999). Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Research, 830, 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Yoshida, A., Ishibashi, T., Elner, S. G., & Elner, V. M. (2003). Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. Journal of Leukocyte Biology, 73, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, L., & Neufeld, A. H. (2001). Activated microglia in the human glaucomatous optic nerve head. Journal of Neuroscience Research, 64, 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Ziaja, M., & Janeczko, K. (1999). Spatiotemporal patterns of microglial proliferation in rat brain injured at the postmitotic stage of postnatal development. Journal of Neuroscience Research, 58, 379–378.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McGeer, E.G., McGeer, P.L. (2007). Neuroinflammation, Alzheimer Disease, and Other Aging Disorders. In: Pharmacological Mechanisms in Alzheimer's Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71522-3_10

Download citation

Publish with us

Policies and ethics