Bell’s Contributions and Quantum Non-locality


The question of whether it is possible to supplement the wave-function of a system with extra parameters, known as hidden variables, has been discussed at several points earlier in this book. In Chapters 3 and 4, we saw that, though hidden variables might seem to have the potential to solve many of the apparent problems of quantum theory, orthodox approaches made a major point of excluding them from consideration. In Chapter 5 we discussed why, fairly soon after discovery of (modern) quantum theory, Einstein rejected the idea of producing a simple hidden variable theory. Nevertheless, his project of producing a (itcomplete) quantum theory was likely to lead others in the direction of adding hidden variables, even though his own ideas were considerably more grandiose.


Entangle State Hide Variable Quantum Teleportation Bell Inequality Physical Review Letter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohr N.(1939). The causality problem inatomic physics, In: New Theoriesin Physics. Paris: International Institute of Intellectual Cooperation, pp. 11–45.Google Scholar
  2. 2.
    Born M. (1949). Natural Philosophy of Cause and Chance. Oxford: Clarendon Press, pp. 108–9.Google Scholar
  3. 3.
    Pauli W. (1948). Editorial, Dialectica 2, 307–11.CrossRefGoogle Scholar
  4. 4.
    Cushing J. (1994). Quantum Mechanics. Chicago: University of Chicago Press, p. 131.MATHGoogle Scholar
  5. 5.
    Jammer M. (1974). The Philosophy of Quantum Mechanics. New York: Wiley, pp. 272–7.Google Scholar
  6. 6.
    Nabl H. (1959). Die Pyramide 3, 96.Google Scholar
  7. 7.
    Bohm D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, Physical Review 85, 166–79, 180-93.ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bell J.S. (1966). On the problem of hidden variables in quantum mechanics, Reviews of Modern Physics 38, 447–52.MATHADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bell J.S. (2004). Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press, pp. 1–13.Google Scholar
  10. 10.
    Von Neumann J. (1932). Die Mathematische Grundlagen der Quantenmechanik. Berlin: Springer-Verlag.Google Scholar
  11. 12.
    Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, pp. 48–51.Google Scholar
  12. 13.
    Cushing J.T. (1994). Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony. Chicago: University of Chicago Press, pp. 140–3.MATHGoogle Scholar
  13. 14.
    Bell J.S. (1964). On the Einstein-Podolsky-Rosen paradox, Physics 1, 195–200; also in Ref. [9], pp. 14-21.Google Scholar
  14. 15.
    Bohm D. (1951). Quantum Theory. Englewood Cliffs, New Jersey: Prentice-Hall, p. 614.Google Scholar
  15. 16.
    Einstein A. (1949). Autobiographical notes, In: Albert Einstein: Philosopher-Scientist. (Schilpp P.A., ed.) Evanston, Illinois: Library of Living Philosophers, p. 85.Google Scholar
  16. 17.
    Shimony A. (1989). Searching for a world view which will accommodate our knowledge of microphysics, In: Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem. (Cushing J.T. and McMullin E., (eds.)) Notre Dame: Notre Dame University Press, pp. 25–37.Google Scholar
  17. 18.
    Clauser J.F. and Shimony A. (1978). Bell’s theorem: experimental tests and implications, Reports of Progress in Physics 41, 1881–1927.ADSCrossRefGoogle Scholar
  18. 19.
    Selleri F. (ed) (1988). Quantum Mechanics versus Local Realism: The Einstein-Podolsky-Rosen Paradox. New York: Plenum.Google Scholar
  19. 20.
    Home D. and Selleri F. (1991). Bell’s theorem and the EPR paradox, Rivista del Nuovo Cimento 14(9), 1–95.MathSciNetCrossRefGoogle Scholar
  20. 21.
    Eberhard P.H. (1977). Bell’s theorem without hidden variables, Nuovo Cimento B 38, 75–80.CrossRefADSMATHGoogle Scholar
  21. 22.
    Peres A. (1978). Unperformed experiments have no results, American Journal of Physics 46, 745–7.ADSCrossRefGoogle Scholar
  22. 23.
    Redhead M. (1987). Incompleteness, Nonlocality, and Realism. Oxford: Clarendon Press, Ch. 4.MATHGoogle Scholar
  23. 24.
    Leggett A.J. (1987). Problems of Physics. Oxford: Oxford University Press, Ch. 5.MATHGoogle Scholar
  24. 25.
    Clauser J.F. and Horne M.A. (1974). Experimental consequences of objective local theories, Physical Review D 10, 526–35.ADSCrossRefGoogle Scholar
  25. 26.
    Ivanovic J.D. (1978). On complex Bell’s inequality, Lettere al Nuovo Cimento 22, 14–6.Google Scholar
  26. 27.
    Muckenheim W. (1982). A resolution of the Einstein-Podolsky-Rosen paradox, Lettere al Nuovo Cimento 35, 300–4.Google Scholar
  27. 28.
    Home D., Lepore V.L. and Selleri F. (1991). Local realistic models and non-physical probabilities, Physics Letter A 158, 357–60.ADSMathSciNetCrossRefGoogle Scholar
  28. 29.
    Agarwal G.S., Home D., and Schleich W. (1992). Einstein-Podolsky-Rosen correlation—parallelism between the Wigner function and the local hidden variable approaches, Physics Letters A 170, 359–62.ADSMathSciNetCrossRefGoogle Scholar
  29. 30.
    Gleason A.M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics 6, 885–93.MATHMathSciNetGoogle Scholar
  30. 31.
    Kochen S. and Specker E.P. (1967). The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics 17, 59–87.MATHMathSciNetGoogle Scholar
  31. 32.
    Penrose R. (1994). On Bell non-locality without probabilities: some curious geometry, In: Quantum Reflections (Ellis J. and Amati D., (eds.)) Cambridge: Cambridge University Press, pp. 1–22.Google Scholar
  32. 33.
    Roy S.M. and Singh V. (1993). Quantum violation of stochastic noncontextual hidden-variable theories, Physical Review A 48, 3379–81.ADSCrossRefGoogle Scholar
  33. 34.
    Hasegawa Y., Liodl R., Badurek G., Baron M., and Rauch H. (2003). Violation of a Bell-like inequality in single-neutron interferometry, Nature 425, 45–8.ADSCrossRefGoogle Scholar
  34. 35.
    Basu S., Bandyopadhyay S., Kar G., and Home D. (2001). Bell’s inequality for a single spin 1/2 particle and quantum contextuality, Physics Letters A 279, 281–6.MATHADSMathSciNetCrossRefGoogle Scholar
  35. 36.
    Jarrett J.P. (1984). On the physical significance of the locality conditions in the Bell arguments, Noûs 18, 569–89.MathSciNetCrossRefGoogle Scholar
  36. 37.
    Shimony A. (1984). Controllable and uncontrollable non-locality, In: Proceedings of the 1st International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology (Kamefuchi S. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 225–30.Google Scholar
  37. 38.
    Maudlin T. (1994). Quantum Nonlocality and Relativity. Oxford: Blackwell.Google Scholar
  38. 39.
    Helliwell T.M. and Konkowski D.A. (1983). Causality paradoxes and nonpara-doxes: classical superluminal signals and quantum measurements, American Journal of Physics 51, 996–1003.ADSCrossRefGoogle Scholar
  39. 40.
    Roy S.M. and Singh V. (1991). Tests of signal locality and Einstein-Bell locality for multiparticle systems, Physical Review Letters 67, 2761–4.MATHADSMathSciNetCrossRefGoogle Scholar
  40. 41.
    Bell J.S. (1986). In: Ghost in the Atom (Davies P.C.W. and Brown J.R., (eds.)) Cambridge, UK: Cambridge University Press, p. 50.Google Scholar
  41. 42.
    Bohm D. (1951). Quantum Theory. Englewood Cliffs: Prentice-Hall, pp. 618–9.Google Scholar
  42. 43.
    Eberhard P.H. (1978). Bell’s theorem and the different concepts of locality, Nuovo Cimento B 46, 392–419.MathSciNetADSGoogle Scholar
  43. 44.
    Eberhard P.H. and Ross R.R. (1989). Quantum field theory cannot provide faster-than-light communication, Foundations of Physics Letters 2, 127–49.CrossRefADSGoogle Scholar
  44. 45.
    Ghirardi G.C., Rimini A., and Weber T. (1980). A general argument against super-luminal transmission through the quantum mechanical measurement process, Lettere al Nuovo Cimento 27, 293–8.MathSciNetGoogle Scholar
  45. 46.
    Page D.N. (1982). The Einstein-Podolsky-Rosen physical reality is completely described by quantum mechanics, Physics Letters A 91, 57–60.ADSMathSciNetCrossRefGoogle Scholar
  46. 47.
    Gisin N. (1991). Bell’s inequality holds for all non-product states, Physics Letters A 154, 201–2.ADSMathSciNetCrossRefGoogle Scholar
  47. 48.
    Roy S.M. and Singh V. (1978). Experimental tests of quantum mechanics versus local hidden variable theories, Journal of Physics A 11, 167–71.CrossRefGoogle Scholar
  48. 49.
    Roy S.M. and Singh V.(1979). Completeness of testsof local hidden variable theories, Journal of Physics A 12, 1003–9.MathSciNetCrossRefGoogle Scholar
  49. 50.
    Garuccio A. and Selleri F. (1980). Systematic derivation of all the inequalities of Einstein locality, Foundations of Physics 10, 209–16.ADSCrossRefGoogle Scholar
  50. 51.
    Garuccio A. (1980). All the inequalities of Einstein locality, In: Quantum Mechanics Versus Local Realism: The Einstein-Podolsky-Rosen Paradox. (Selleri F., ed.) New York: Plenum, pp. 87–113.Google Scholar
  51. 52.
    Lepore V.L. (1989). New inequalities from local realism, Foundations of Physics Letters 2, 15–26.MathSciNetCrossRefADSGoogle Scholar
  52. 53.
    Garg A. and Mermin N.D. (1982). Correlation inequalities and hidden variables, Physical Review Letters 49, 1220–3.ADSMathSciNetCrossRefGoogle Scholar
  53. 54.
    Greenberger D.M., Horne M.A., and Zeilinger A. (1989). Going beyond Bell’s theorem, In: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. (Kafatos M., ed.) Dordrecht: Kluwer, pp. 73–6.Google Scholar
  54. 55.
    Greenberger D.M., Horne M.A., Shimony A., and Zeilinger A. (1990). Bell’s theorem without inequalities, American Journal of Physics 58, 1131–43.ADSMathSciNetCrossRefGoogle Scholar
  55. 56.
    Mermin N.D. (1990). Quantum mysteries revisited, American Journal of Physics 58, 731–4.ADSMathSciNetCrossRefGoogle Scholar
  56. 57.
    Fine A. (1982). Hidden variables, joint probability, and the Bell inequalities, Physical Review Letters 48, 291–5.ADSMathSciNetCrossRefGoogle Scholar
  57. 58.
    Fine A.(1982). Joint distributions, quantum correlations, and commuting observables, Journal of Mathematical Physics 23, 1306–10.Google Scholar
  58. 59.
    Hardy L. (1991). A new way to obtain Bell inequalities, Physics Letters A 161, 21–5.ADSMathSciNetCrossRefGoogle Scholar
  59. 60.
    Hardy L. (1992). Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories, Physical Review Letters 68, 2981–4.MATHADSMathSciNetCrossRefGoogle Scholar
  60. 61.
    Hardy L. (1993). Nonlocality for two particles without inequalities for almost all entangled states, Physical Review Letters 71, 1665–8.MATHADSMathSciNetCrossRefGoogle Scholar
  61. 62.
    Stapp H.(1993). Mind, Matter, and Quantum Mechanics. New York: Springer-Verlag, pp. 5–8.Google Scholar
  62. 63.
    Mermin N.D. (1994). What’s wrong with this temptation? Physics Today 9(6), 9–11.Google Scholar
  63. 64.
    Jordan T.F. (1994). Testing Einstein-Podolsky-Rosen assumptions without inequalities with two photons or particles with spin1/2, Physical Review A 50, 62–6.ADSCrossRefGoogle Scholar
  64. 65.
    Goldstein S. (1994). Nonlocality without inequalities for almost all entangled states for two particles, Physical Review Letters 72, 1951.Google Scholar
  65. 66.
    Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, Ch.6.Google Scholar
  66. 67.
    Ferrero M., Marshall T.W. and Santos E. (1990). Bell’s theorem: local realism versus quantum mechanics, American Journal of Physics 58, 683–8.ADSCrossRefGoogle Scholar
  67. 68.
    Santos E. (1989). Relevance of detector efficiency in the optical tests of Bell inequalities, Physics Letters A 139, 431–6.ADSMathSciNetCrossRefGoogle Scholar
  68. 69.
    Santos E. (1991). Interpretation of the quantum formalism and Bell’s theorem, Foundations of Physics 21, 221–41.ADSMathSciNetCrossRefGoogle Scholar
  69. 70.
    Santos E.(1996). Unreliability ofperformed tests of Bell’s inequality using parametric down-converted photons, Physics Letters A 212, 10–14.Google Scholar
  70. 71.
    Marshall T.W., Santos E. and Selleri F. (1983). Local realism has not been refuted by atomic cascade experiments, Physics Letters A 98, 5–9.ADSCrossRefGoogle Scholar
  71. 72.
    Home D. and Marshall T.W. (1985). A stochastic local realist model for the EPR atomic-cascade experiment which reproduces the quantum-mechanical coincidence rates, Physics Letters A 113, 183–6.ADSMathSciNetCrossRefGoogle Scholar
  72. 73.
    Clauser J.F., Horne M.A., Shimony A. and Holt R.A. (1969). Proposed experiment to test hidden-variable theories, Physical Review Letters 23, 880–4.ADSCrossRefGoogle Scholar
  73. 74.
    Garg A. and Mermin N.D. (1987). Detector inefficiencies in the Einstein-Podolsky-Rosen experiment, Physical Review D 35, 3831–5.ADSCrossRefGoogle Scholar
  74. 75.
    Eberhard P.H. (1993). Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Physical Review A 47, R747-50.Google Scholar
  75. 76.
    Bohm D. and Aharonov Y. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen and Podolsky, Physical Review 108, 1070–6.ADSCrossRefGoogle Scholar
  76. 77.
    Aspect A. Imbert C. and Roger G. (1980). Absolute measurement of an atomic cascade rate using a two photon coincidence technique: application to the 4p21S0— 4s4p1P1-4s21S0 cascade of calcium excited by a two photon absorpt, Optics Comminications 34, 46–52.ADSCrossRefGoogle Scholar
  77. 78.
    Aspect A., Grangier P. and Roger G. (1981). Experimental tests of realistic local theories via Bell’s theorem, Physical Review Letters 47, 460–3.ADSCrossRefGoogle Scholar
  78. 79.
    Aspect A., Grangier P. and Roger G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities, Physical Review Letters 49, 91–4.ADSCrossRefGoogle Scholar
  79. 80.
    Aspect A., Dalibard J. and Roger G. (1982). Experimental tests of Bell’s inequalities using time-varying analysers, Physical Review Letters 49, 1804–7.ADSMathSciNetCrossRefGoogle Scholar
  80. 81.
    Aspect A. and Grangier P. (1985). Tests of Bell’s inequalities with pairs of low energy correlated photons: An experimental realization of Einstein-Podolsky-Rosentype correlations, In: Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment. (Lahti P. and Mittelstaedt P., (eds.)), Singapore: World Scientific pp. 51–71.Google Scholar
  81. 82.
    Shih Y.H.and Alley C.O.(1988). NewtypeofEinstein-Podolsky-Rosen-Bohmexper-iment using pairs of light quanta produced by optical parametric down conversion, Physical Review Letters 61, 2921–4.Google Scholar
  82. 83.
    Ou Z.Y. and Mandel L. (1988). Violation of Bell’s inequality and classical probability in a two-photon correlation experiment, Physical Review Letters 61, 50–3.ADSMathSciNetCrossRefGoogle Scholar
  83. 84.
    Rarity J.G. and Tapster P.R. (1990). Experimental violation of Bell’s inequality based on phase and momentum, Physical Review Letters 64, 2495–8.ADSCrossRefGoogle Scholar
  84. 85.
    Horne M.A. and Zeilinger A. (1985). A Bell-type EPR experiment using linear momenta, In: Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment. (Lahti P. and Mittelstaedt P., (eds.)) Singapore: Worl Scientific, p. 435–9.Google Scholar
  85. 86.
    Horne M.A., Shimony A., and Zeilinger A. (1989). Two-particle interferometry, Physical Review Letters 62, [pp2209-12.Google Scholar
  86. 87.
    Tittel W., Brendel J., Gisin B., Herzog T., Zbinden H., and Gisin N. (1998). Experimental demonstration of quantum correlations over more than 10 km, Physical Review A 57, 3229–32.ADSCrossRefGoogle Scholar
  87. 88.
    Tittel W., Brendel J., Zbinden H., and Gisin N. (1998). Violation of Bell inequalities by photons more than 10km apart, Physical Review Letters 81, 3563–6.ADSCrossRefGoogle Scholar
  88. 89.
    Tittel W., Brendel J., Gisin N., and Zbinden H. (1999). Long-distance Bell-tests using energy-time entangled photons, Physical Review A 59, 4150–63.ADSMathSciNetCrossRefGoogle Scholar
  89. 90.
    Kwiat P.G., Mattle K., Weinfurter H., Zeilinger A., Sergienko A.V. and Shih Y.H. (1995). New high-intensity source of polarisation-entangled photon states, Physics Review Letters 75, 4337–40.ADSCrossRefGoogle Scholar
  90. 91.
    Weihs G., Jennewein T., Simon C., Weinfurter H., and Zeilinger A. (1998). Violation of Bell’s inequality under strict Einstein locality conditions, Physical Review Letters 81, 5039–43.MATHADSMathSciNetCrossRefGoogle Scholar
  91. 92.
    Kwiat P.G., Eberhard P.H., Steinberg A.M., and Chiao R.Y. (1994). Proposal for a loophole-free Bell inequality test, Physical Review A 49, 3209–20.ADSCrossRefGoogle Scholar
  92. 93.
    Fry E.S., Walther T., and Li S. (1995). Proposal for a loophole-free test of the Bell inequalities, Physical Review A 52, 4381–95.ADSMathSciNetCrossRefGoogle Scholar
  93. 94.
    Hagley E., Maitre X., Nogues G., Wunderlich C., Brune M., Raimond J.M., and Haroche S. (1997). Generation of Einstein-Podolsky-Rosen pairs of atoms, Physical Review Letters 79, 1–5.ADSCrossRefGoogle Scholar
  94. 95.
    Rowe M.A., Klepinski D., Meyer V., Sackett C.A., Itano W.M., Monroe C., and Wineland D.J. (2001). Experimental violation of a Bell’s inequality with efficient detection, Nature 409, 791–4.ADSCrossRefGoogle Scholar
  95. 96.
    Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., and Zeilinger A. (1999).Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Physical Review Letters 82, 1345–9.MATHADSMathSciNetCrossRefGoogle Scholar
  96. 97.
    Togerson J.R., Branning D., Monken C.H., and Mandel L. (1995). Experimental demonstration of the violation of local realism without Bell inequalities, Physics Letters A 204, 323–8.ADSCrossRefGoogle Scholar
  97. 98.
    Di Giuseppe G., de Martini F., and Boschi D. (1997). Experimental test of the violation of local realism in quantum mechanics without Bell inequalities, Physical Review A 56, 176–81.ADSCrossRefGoogle Scholar
  98. 99.
    Boschi D., Branca S., de Martini F., and Hardy L. (1997). Ladder proof of nonlocality without inequalities: theoretical and experimental results, Physical Review Letters 79, 2755–8.MATHADSMathSciNetCrossRefGoogle Scholar
  99. 100.
    Cabello A. (2001). Bell’s theorem without inequalities and without probabilities for two observers, Physical Review Letters 86, 1911–4.ADSMathSciNetCrossRefGoogle Scholar
  100. 101.
    Cabello A. (2001). ‘All versus nothing’ inseparability for two observers, Physical Review Letters 87, 010403.ADSMathSciNetCrossRefGoogle Scholar
  101. 102.
    Wootters W.K. and Zurek W.H. (1982). A single quantum cannot be cloned, Nature 299, 802–3.ADSCrossRefGoogle Scholar
  102. 103.
    Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., and Wootters W.K. (1993). Teleporting an unknown quantum state via dual classical and Einstein Podolsky-Rosen channels, Physical Review Letters 70, 1895–9.MATHADSMathSciNetCrossRefGoogle Scholar
  103. 104.
    Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390, 575.ADSCrossRefGoogle Scholar
  104. 105.
    Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., Zukowski M. and Zeilinger A. (1998). A posteriori teleportation—reply, Nature 394, 841.ADSCrossRefGoogle Scholar
  105. 106.
    Boschi D., Branca S., de Martini F., Hardy L., and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 80, 1121–5.MATHADSMathSciNetCrossRefGoogle Scholar
  106. 107.
    Furusawa A., Sorensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., and Polzik E.S. (1998). Unconditional quantum teleportation, Science 282, 706–9.ADSCrossRefGoogle Scholar
  107. 108.
    Bose S. and Home D. (2002). Generic entanglement generation, quantum statistics, and complementarity, Physical Review Letters 88, 050401.ADSMathSciNetCrossRefGoogle Scholar
  108. 109.
    Braunstein S.L. (1996). Quantum teleportation without irreversible detection, Physical Review A 53, 1900–2.ADSCrossRefGoogle Scholar
  109. 110.
    Jozsa R.O. (1998). Entanglement and quantum computation, In: The Geometric Universe: Science, Geometry and the Work of Roger Penrose. (Huggett S.A., Mason L.J., Tod K.P. and Woodhouse N.M.J., (eds.)) Oxford: Oxford University Press, pp. 369–79.Google Scholar
  110. 111.
    Penrose R. (1998). Quantum computation, entanglement and state reduction, Philosophical Transactions of the Royal Society A 356, 1927–39.ADSMathSciNetMATHGoogle Scholar
  111. 112.
    Deutsch D. and Hayden P. (2000). Information flow in entangled quantum systems, Proceedings of the Royal Society A 456, 1759–74.MATHMathSciNetCrossRefGoogle Scholar
  112. 113.
    Zukowski M. (2000). Bell’s theorem for the nonclassical part of the quantum teleportation process, Physical Review A 62, 032101.ADSMathSciNetCrossRefGoogle Scholar
  113. 114.
    Clifton R. and Pope D. (2001). On the non-locality of the quantum channel in the standard teleportation protocol, Physics Letters A 292, 1–11.MATHADSMathSciNetCrossRefGoogle Scholar
  114. 115.
    Zeilinger A. (2000). Quantum teleportation, Scientific American 282(4), 50–9.MathSciNetCrossRefGoogle Scholar
  115. 116.
    Corbett J.V. and Home D. (2000). Quantum effects involving interplay between unitary dynamics and kinematic entanglement, Physics Review A 62, 062103.ADSCrossRefGoogle Scholar
  116. 117.
    Corbett J.V. and Home D. (2004). Information transfer and non-locality for a tripartite entanglement using dynamics, Physics Letters A 333, 382–8.ADSMathSciNetCrossRefMATHGoogle Scholar
  117. 118.
    Bell J.S. (1981). Bertlmann’s socks and the nature of reality, Journal de Physique Colloque C2, 42, 41–61; also in Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press, pp. 139–58.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations