Advertisement

The Standard Interpretation of Quantum Mechanics

Abstract

In Chapter 3 we explored the various conceptual problems and indeed apparent paradoxes present in the new quantum theory of Heisenberg and Schrödinger. For a comparatively short period, discussion on how to resolve these difficulties was quite open; indeed during this period some of those who were later to support the Copenhagen interpretation without question, such as Werner Heisenberg and Max Born, showed quite clear divergences from Bohr’s position. However this period ended quite abruptly after Bohr’s famous Como lecture1 of 1927, the content of which was presented in similar form shortly afterwards at the fifth Solvay conference. At this lecture, Bohr expounded his approach on the way in which these problems should be resolved with the use of the conceptual framework he called complementarity, which was the basis of what was to become known as the Copenhagen interpretation of quantum theory.

Keywords

Quantum Mechanics Quantum Theory Hide Variable Single System Standard Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohr N. (1934). The quantum postulate and the recent development of atomic theory. Nature (Supplement) 121, 580–90 (1928); reprinted in Bohr N. (1934). Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press.MATHCrossRefADSGoogle Scholar
  2. 2.
    von Neumann J. (1955). Mathematical Foundations of Quantum Theory. Princeton: Princeton University Press. [Translation of: Mathematische Grundlagen der Quanten-mechanik. (Berlin: Springer, 1932).]Google Scholar
  3. 3.
    Hanson N.R. (1959). Copenhagen interpretation of quantum theory, American Journal of Physics 27, 1–15.MATHCrossRefADSGoogle Scholar
  4. 4.
    Stapp H.P. (1972). The Copenhagen interpretation, American Journal of Physics 40, 1098–116.CrossRefADSGoogle Scholar
  5. 5.
    Home D. and Whitaker M.A.B. (1992). Ensemble interpretation of quantum mechanics: a modern perspective, Physics Reports 210, 223–317.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Ballentine L.E. (1970). The statistical interpretation of quantum mechanics, Reviews of Modern Physics 42, 358–81.MATHCrossRefADSGoogle Scholar
  7. 7.
    Bohr N. (1963). Essays 1958/1962 on Atomic Physics and Human Knowledge. New York: Wiley, p. 25.MATHGoogle Scholar
  8. 8.
    Bohr N. (1948). On the nature of causality and complementarity, Dialectica 2, 312–19.MATHCrossRefGoogle Scholar
  9. 9.
    Heisenberg W. (1955). In: Niels Bohr and the Development of Physics. (Pauli W., ed.) Oxford: Pergamon Press.Google Scholar
  10. 10.
    Heisenberg W. (1958). Physics and Philosophy. New York: Harper and Row.Google Scholar
  11. 11.
    Folse H.J. (1985). The Philosophy of Niels Bohr. Amsterdam: North-Holland.Google Scholar
  12. 12.
    Murdoch D. (1987). Niels Bohr’s Philosophy of Physics. Cambridge: Cambridge University Press.Google Scholar
  13. 13.
    Beller M. (1992). The birth of Bohr’s complementarity: the context and the dialogues, Studies in the History and Philosophy of Science 23, 147–80.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Mackinnon E. (1994). Bohr and the realism debates, In: Niels Bohr and Contemporary Philosophy (Faye J. and Folse H.J., (eds.)) Dordrecht: Kluwer, pp. 279–302.Google Scholar
  15. 15.
    Beller M. and Fine A. (1994). Bohr’s response to EPR, In: Niels Bohr and Contemporary Philosophy (Faye J. and Folse H.J., (eds.)) Dordrecht: Kluwer, pp. 1–31.Google Scholar
  16. 16.
    Bohr N. (1934). Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press, pp. 54–56, p. 108.MATHGoogle Scholar
  17. 17.
    Pauli W. (1988). Letter dated 12 August 1954, quoted in Laurikainen, K.V. Beyond the Atom: The Philosophical Thought of Wolfgang Pauli. Heidelberg: Springer-Verlag, p. 20.Google Scholar
  18. 18.
    Laurikainen K.V. (1988). Beyond the Atom: The Philosophical Thought of Wolfgang Pauli. Heidelberg: Springer-Verlag.MATHGoogle Scholar
  19. 19.
    Nair R. (1990). Journal of Scientific and Industrial Research (India) 49, 532–42.MathSciNetGoogle Scholar
  20. 20.
    Born M. (1926). Zur Quantenmechanik der Stossvorgänge [On the quantum mechanics of collisions], Zeitschrift für Physik 37, 863–70.CrossRefADSGoogle Scholar
  21. 21.
    Born M. (1926). Quantenmechanik der Stossvorgänge [Quantum mechanics of collisions], Zeitschrift für Physik 38, 803–27.CrossRefADSGoogle Scholar
  22. 22.
    Born M. (1927). Das Adiabatenprinzip in der Quantenmechanik [The adiabatic principle in quantum mechanics], Zeitschrift für Physik 40, 167–92.CrossRefADSGoogle Scholar
  23. 23.
    Beller M. (1990). Born’s probabilistic interpretation: a case study of ‘concepts in flux’, Studies in the History and Philosophy of Science 21, 563–88.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Pauli W. (1927). Zur Quantenmechanik des magnetischen Elektrons [On the quantum mechanics of magnetic electrons], Zeitschrift für Physik 43, 601–23.CrossRefADSGoogle Scholar
  25. 25.
    Dirac P.A.M. (1930). The Principles of Quantum Mechanics. Oxford: Oxford University Press, Chs. 2 and 3.MATHGoogle Scholar
  26. 26.
    Feyerabend P.K. (1964). Problems of microphysics, In: Frontiers of Science and Philosophy. (Colodny R.G., ed.) London: George Allen and Unwin, pp. 189–283.Google Scholar
  27. 27.
    Shimony A. (1993). Physical and philosophical issues in the Bohr-Einstein debate, In: Proceedings of the Symposia on the Foundations of Modern Physics 1992. (Laurikainen K.V. and Montonen C., (eds.)) Singapore: World Scientific, pp. 79–96.Google Scholar
  28. 28.
    Ballentine L.E. (1972). Einstein’s interpretation of quantum mechanics. American Journal of Physics 40, 1763–71.CrossRefADSGoogle Scholar
  29. 29.
    d’Espagnat B. (1995). Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts. Reading, Massachusetts: Addison-Wesley, pp. 297–302.Google Scholar
  30. 30.
    Blokhintsev D.I. (1968). The Philosophy of Quantum Mechanics. Dordrecht: Reidel, p. 50.MATHGoogle Scholar
  31. 31.
    Penrose R.(1987). Quantumphysics and conscious thought, In: Quantum Implications: Essays in Honour of David Bohm. (Hiley B.J. and Peat D., (eds.)) London: Routledge, pp. 105–20.Google Scholar
  32. 32.
    Wootters W.K. and Zurek W.H. (1982). A single quantum cannot be cloned, Nature 299, 802–3. 33.CrossRefADSGoogle Scholar
  33. 33.
    Yuen H.P. (1986). Amplification of quantum states and noiseless photon amplifiers, Physics Letters A 113, 405–7.CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    D’Ariano G.M. and Yuen H.P. (1996). Impossibility of measuring the wave function of a single quantum system, Physical. Review Letters 76, 2832–5.CrossRefADSGoogle Scholar
  35. 35.
    Aharonov Y. and Vaidman L.(1993). Measurement of the Schrödinger wave of a single system, Physics Letters A 178, 38–42.CrossRefADSGoogle Scholar
  36. 36.
    Aharonov Y. and Vaidman L. (1993). The Schrödinger wave is observable after all!, In: Quantum Control and Measurement. (Ezawa H. and Murayama Y., (eds.)) Amsterdam: Elsevier, pp. 99–106.Google Scholar
  37. 37.
    Aharonov Y., Anandan J., and Vaidman L. (1993). Meaning of the wave function, Physical Review A 47, 4616–26.CrossRefADSGoogle Scholar
  38. 38.
    Heisenberg W. (1930). Physical Principles of the Quantum Theory. Chicago: University of Chicago Press (reprinted New York: Dover), p. 64.MATHGoogle Scholar
  39. 39.
    Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press, p. 189.Google Scholar
  40. 40.
    Bohr N. (1931). Maxwell and modern theoretical physics, Nature (Supplement) 128, 691–2.MATHCrossRefADSGoogle Scholar
  41. 41.
    Bohr N. (1934). Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press, p. 56.MATHGoogle Scholar
  42. 42.
    Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press, p. 190.Google Scholar
  43. 43.
    Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, pp. 100–101.Google Scholar
  44. 44.
    Dirac P.A.M. (1930 and many later editions). The Principles of Quantum Mechanics. Oxford: Clarendon, p. 36.MATHGoogle Scholar
  45. 45.
    Bell J.S. (1990). Against ‘measurement’, Physics World 3(8), 33–40.Google Scholar
  46. 46.
    Jammer M. (1970). The Philosophy of Quantum Mechanics. New York: Wiley, Ch. 7.Google Scholar
  47. 47.
    Born M. (1949). Natural Philosophy of Cause and Chance. Oxford: Oxford University Press, pp. 108–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations