Quantum Foundations: General Outlook


For followers of Copenhagen, study of the foundational aspects of quantum theory was effectively completed in 1927 by Bohr’s paper at Como. Bohr was to continue to write on quantum theory and complementarity for the remainder of his life, but his writings were mainly explanatory, or attempts to strengthen the philosophical base of complementarity, or applications of complementarity to areas of knowledge other than quantum theory.1 It was taken for granted that no genuine re-examination of the fundamental issues was required-or, indeed, permitted. John Clauser2 has made it particularly clear to what extent any questioning of the Copenhagen position was regarded practically as heresy: ‘Religious dogmatism then quickly promoted a nearly universal acceptance of quantum theory and its Copenhagen interpretation as gospel, along with a total unwillingness to even mildly question the theory’s foundations.’


Quantum Mechanic Quantum Theory Physical Review Physical Review Letter General Outlook 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folse H.J. (1985). The Philosophy of Niels Bohr. Amsterdam: North-Holland; Whitaker, A. (2006). Einstein, Bohr and the Quantum Dilemma. (1st edn. 1996, 2nd edn. 2006) Cambridge: Cambridge University Press.Google Scholar
  2. 2.
    Clauser J.F. (2002). Early history of Bell’s theorem, In: Quantum [Un]speakables. (Bertlmann R.A. and Zeilinger A., (eds.)) Berlin: Springer, pp. 61–98.Google Scholar
  3. 3.
    Ghose P. (2006). Testing Quantum Mechanics on New Ground. Cambridge: Cambridge University Press.Google Scholar
  4. 4.
    Leggett AJ. (1984). Macroscopic quantum tunnelling and related effects in Josephson systems, In: Percolation, Localization, and Superconductivity. (Goldman A.M and Wolf S., (eds.)) NATO Advanced Study Institute, Vol. 109. New York: Plenum, pp. 1–41.Google Scholar
  5. 5.
    Leggett AJ. (1986). Quantum mechanics at the macroscopic level, In: Directions in Condensed Matter Physics. (Grinstein G. and Mazenko G.,(eds.)) Singapore: World Scientific, pp. 237–44.Google Scholar
  6. 6.
    Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A., Garg A. and Zwerger W. (1987). Dynamics of the dissipative two-state system, Reviews of Modern Physics 59, 1–85.CrossRefADSGoogle Scholar
  7. 7.
    Tesche CD., Kirtley J.R., Gallagher W.J., Kleinsasser A.W, Sandstorm R.L., Raider S.I., and Fisher M.P.A. (1989). In: Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics (Kobayashi S. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 233–43.Google Scholar
  8. 8.
    Tesche CD. (1990). Can a non-invasive measurement of magnetic flux be performed with superconducting circuits? Physical Review Letters 64, 2358–61.CrossRefADSGoogle Scholar
  9. 9.
    Feynman R.P., Leighton R.B., and Sands M. (1964). Feynman Lectures on Physics, Vol. 3, Chs. 9–1. Reading, Massachusetts: Addision Wesley.Google Scholar
  10. 10.
    Rae A.I.M. (1990). Can GRW theory be tested by experiments on SQUIDs? Journal ofPhysicsA 23,L57–60.Google Scholar
  11. 11.
    Gallis M.R. and Fleming G.N. (1990). Environmental and spontaneous localization, Physical Review A 42, 38–48.CrossRefADSGoogle Scholar
  12. 12.
    Leggett A. J. (1986). Quantum mechanics at the macroscopic level. In: Lesson of Quantum Theory (de Boer J., Dal E. and Ulfbeck O., (eds.)) Amsterdam: Elsevier, p. 49–64.Google Scholar
  13. 13.
    Leggett AJ. (1980). Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics (Supplement) 69, 80–100.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Leggett AJ. and Garg A. (1985). Quantum mechanics versus macroscopic realism is the flux there when nobody looks? Physical Review Letters 54, 857–60.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Leggett AJ. (1987). Experimental approaches to the quantum mechanics paradox, In: Proceedings of the 2nd International Symposium on the Foundations of Quantum Mechanics. (Namiki M. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 297–317.Google Scholar
  16. 16.
    Bol D.W and Ouboter R.D. (1988). Thermal activation in the quantum regime and macroscopic tunnelling in the thermal regime in a metabistable system..., Physica 154B, 56–65.ADSGoogle Scholar
  17. 17.
    Clifton R.K. (1991). In: Proceedings of the Symposium on the Foundations of Modern Physics 1990 (Lahti P. and Mittelsteadt P., eds.), Singapore: World Scientific.Google Scholar
  18. 18.
    Redhead M. (1987). Incompleteness, Nonlocality, and Realism. Oxford, UK: Oxford University Press, Ch. 4.MATHGoogle Scholar
  19. 19.
    Chakravarty S. and Leggett A. J. (1984). Dynamics of the two-state system with ohmic dissipation, Physical Review Letters 52, 5–8.CrossRefADSGoogle Scholar
  20. 20.
    Leggett AJ. (2002). Testing the limits of quantum mechanics: motivation, state of play, prospects, Journal of Physics-Condensed. Matter 14, R 415–51.CrossRefADSGoogle Scholar
  21. 21.
    Yu Y, Han S.Y, Chu X., Chu S.I., and Wang Z. (2002). Coherent temporal oscillations of macroscopic states in a Josephson junction, Science, 296, 889–92.CrossRefADSGoogle Scholar
  22. 22.
    Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C, Esteve D., and Devoret M.H. (2002). Manipulating the quantum state of an electrical circuit, Science 296, 886–9.CrossRefADSGoogle Scholar
  23. 23.
    Friedman J.R., Patel V., Chen W., Tolpygo S.K., and Lukens J.E. (2000). Quantum superposition of distinct macroscopic states, Nature 406, 43–6.CrossRefADSGoogle Scholar
  24. 24.
    Arndt M., Nairz O., Vos-Andreae J., Keller C, van der Zouw G., and Zeilinger A. (1999). Wave-particle duality of C 60 molecules, Nature 401, 680–2.CrossRefADSGoogle Scholar
  25. 25.
    Arndt M., Hornberger K., and Zeilinger A. (2005). Probing the limits of the quantum world, Physics World 18(3), 35–40.Google Scholar
  26. 26.
    Hackermuller L., Uttenthaler S., Hornberger K., Reiger E., Brezger B., Zeilinger A., and Arndt M. (2003). Wave nature of biomolecules and fluorofullerenes, Physical Review Letters 91, 090408.CrossRefADSGoogle Scholar
  27. 27.
    Awschalom D.D., Smyth J.F., Grinstein G., DiVincenzo D.P., and Loss, D. (1992). Macroscopic quantum tunnelling in magnetic proteins, Physics Review Letters 68, 3092–5.CrossRefADSGoogle Scholar
  28. 28.
    Home D. and Chattopadhyaya R. (1996). DNA molecular cousin of Schrödinger’s cat:a curious example of quantum measurement, Physical Review Letters 76, 2836–9.MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Rae A. (1986). Quantum Physics: Illusion or Reality? Cambridge: Cambridge University Press, 1986, p.61.Google Scholar
  30. 30.
    Shimony A. (1989). Search for a worldview which can accommodate our knowledge of microphysics, In: Philosophical Consequences of Quantum Theory. (Cushing J.T. and McMullin E., (eds.)), Notre Dame: University of Notre Dame Press, pp. 25–37.Google Scholar
  31. 31.
    Percival I. (1991). Schrödinger quantum cat, Nature 351, 357.Google Scholar
  32. 32.
    Marshall W., Simon C, Penrose, R., and Bouwmeester, D. (2003). Towards quantum superposition of a mirror, Physical Review Letters 91, 130401.Google Scholar
  33. 33.
    Fonda L., Ghirardi G.C., Rimini A., and Weber T. (1973). Quantum foundations of exponential decay law, Nuovo Cimento A 15, 689–704.ADSCrossRefGoogle Scholar
  34. 34.
    Degasperis A., Fonda, L., and Ghirardi, G.C. (1974). Does lifetime of an unstable system depend on measuring apparatus, Nuovo Cimento A 21, 471–84.ADSCrossRefGoogle Scholar
  35. 35.
    Misra B. and Sudarshan E.C.G. (1977). Zeno’s paradox in quantum theory, Journal of Mathematical Physics 18, 756–63.CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Chiu C.B., Sudarshan E.C.G., and Misra B. (1977). Time evolution of unstable quantum states and a resolution of Zeno’s paradox, Physical Review D 16, 520–9.CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Home D. and Whitaker M. A.B. (1992). A critical re-examination of the quantum Zeno paradox, Journal of Physics A 25, 657–64.CrossRefGoogle Scholar
  38. 38.
    Itano W.M., Heinzen D.J., Bollinger J.J., and Wineland D.J. (1990). Quantum Zeno effect, Physical Review A 41, 2295–300.CrossRefADSGoogle Scholar
  39. 39.
    Wineland D.J. and Itano WM. (1987). Laser cooling, Physics Today 40(6), 34–40.CrossRefGoogle Scholar
  40. 40.
    Home D. and Whitaker M.A.B. (1997). A conceptual analysis of quantum Zeno: paradox, timeasurement and experiment, Annals of Physics 258, 237–85.MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Facchi P. and Pascazio S. (2001). Quantum Zeno and inverse quantum Zeno effects, Progress in Optics 42, 147–217.CrossRefGoogle Scholar
  42. 42.
    Facchi P., Nakazoto H., and Pascazio S. (2001). From the quantum Zeno to the inverse quantum Zeno effect, Physical Review Letters 86, 2699–703.CrossRefADSGoogle Scholar
  43. 43.
    Balachandran A.P. and Roy S.M. (2000). Quantum anti-Zeno paradox, Physical Review Letters 84, 4019–22.MATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Facchi P. Lidar D.A., and Pascazio S. (2004). Unification of dynamical decoupling and the quantum Zeno effect, Physical Review A 69, 032314.CrossRefADSGoogle Scholar
  45. 45.
    Luis A. (2001). Quantum state preparation and control via the quantum Zeno effect, Physical Review A 63, 0521CrossRefGoogle Scholar
  46. 46.
    Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., and Lidar D.A. (2005). Control of decoherence: analysis and comparison of three different strategies, Physical Review A 71, 022302.CrossRefADSGoogle Scholar
  47. 47.
    Mandelstam L. and Tamm I.G. (1945). The uncertainty principle between energy and time in nonrelativistic quantum mechanics, Journal of Physics (USSR) 9, 249–54.MathSciNetGoogle Scholar
  48. 48.
    Allcock G.R. (1969). The time of arrival in quantum mechanics, Annals of Physics (New York) 53, 253–85, 286-310, 311-48.CrossRefADSGoogle Scholar
  49. 49.
    Gislason E.A., Sabeli N.H., and Wood J.W. (1985). New form of the time-energy uncertainty relation, Physical Review A 31, 2078–81.CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Landau L. and Peierls R. (1931). Extension of the principle of indeterminateness for the relativistic quantum theory, Zeitschrift fur Physik 69, 56–69.MATHCrossRefADSGoogle Scholar
  51. 51.
    Aharonov Y. and Bohm D. (1961). Time in the quantum theory and the uncertainty relation for time and energy, Physical Review A 122, 1649–58.MATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Aharonov Y. and Bohm D. (1964). Answer to Fock concerning the time energy indeterminacy relation, Physical Review B 134, 1417–8.CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Pegg D.T. (1991). Wave-function collapse time, Physics Letters A 153, 263–4.CrossRefADSGoogle Scholar
  54. 54.
    Busch P. (2002). The time-energy uncertainty relations, in Ref. [55], pp. 69–98.Google Scholar
  55. 55.
    Muga J.G. Sala Mayato R., and Egusquiza I.L. ((eds.)) (2002). Time in Quantum Mechanics. Berlin: Springer.Google Scholar
  56. 56.
    Pauli W (1958). In: Encyclopedia of Physics (Flugge S., ed.) Berlin: Springer, Vol. V/l,p. 60.Google Scholar
  57. 57.
    Grot N., Rovelli C, and Tate R.S. (1996). Time of arrival in quantum mechanics, Physical Review A, 54, 4676–90.CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Muga J.G. and Leavens C.R. (2000). Arrival time in quantum mechanics, Physics Reports 338, 353–438.CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Hauge E.H. and Stovneng J.A. (1989). Tunnelling times-a critical review, Reviews of Modern Physics 61, 917–36.CrossRefADSGoogle Scholar
  60. 60.
    Landauer R. and Martin T. (1994). Barrier interaction times in tunnelling, Reviews of Modern Physics 66, 217–28.CrossRefADSGoogle Scholar
  61. 61.
    Collins S., Lowe D., and Barker J.R. (1987). The quantum-mechanical tunnelling time problem revisited, Journal of Physics C 20, 6213–32.CrossRefGoogle Scholar
  62. 62.
    Dumont R.S. and Marchioro T.L. (1993). Tunneling-time probability-distribution, Physical Review A 47, 85–97.CrossRefADSGoogle Scholar
  63. 63.
    Garcia-Calderon G. and Villavicencio J. (2001). Time dependence of the probability density in the transient regime for tunnelling, Physical Review A 64, 012107.CrossRefADSGoogle Scholar
  64. 64.
    Garcia-Calderon G. (2002). Decay time and tunnelling transient phenomena, Physical Review A 66, 032104.CrossRefADSGoogle Scholar
  65. 65.
    Sokolovski D. and Baskin L.M. (1987). Transverse time in quantum scattering, Physical Review A 36, 4604–11.CrossRefADSGoogle Scholar
  66. 66.
    Capasso F., Mohammed K., and Cho A.Y (1986). Resonant tunnelling through double barriers, tiperpendicular quantum transport phenomena 4 superlattices, and their device applications, IEEE Journbal of Quantum Electronics 22, 1853–69.CrossRefADSGoogle Scholar
  67. 67.
    Brouard S., Sala R., and Muga J.G. (1994). Systematic approach to quantum transmission and reflection times, Physical Review A 49,4312–25.CrossRefADSGoogle Scholar
  68. 68.
    Steinberg A.M., Kwiat P.G., and Chiao R.Y (1993). Measurement of the single photon tunnelling-time, Physical Review Letters 71, 708–11.CrossRefADSGoogle Scholar
  69. 69.
    Chiao R.Y. (1993). Superluminal (but causal) propagation of wave-packets in transparent media with inverted atomic populations, Physical Review A 48, R34–7.CrossRefADSGoogle Scholar
  70. 70.
    Chiao R.Y, Kozhekin A.E., and Kuriski G. (1996). Tachyonlike excitations in inverted two-level media, Physical Review Letters 77, 1254–7.CrossRefADSGoogle Scholar
  71. 71.
    Chiao R.Y. and Steinberg A.M. (1997). Tunneling times and superluminality, Progress in Optics 37, 345–405.CrossRefGoogle Scholar
  72. 72.
    Chiao R.Y., Kwiat P.G., and Steinberg A.M. (1993). Faster than light, Scientific American 269(2), 52–60.ADSCrossRefGoogle Scholar
  73. 73.
    Ranfagni A., Fabeni P., Pazzi G.P., and Mugnai D. (1993). Anomalous pulse delay in microwave propagation-a plausible connection to the tunnelling time, Physical Review E 48, 1453–60.CrossRefADSGoogle Scholar
  74. 74.
    Steinberg A.M. (2003). Clear message for causality, Physics World 16 (12), 19–20.CrossRefGoogle Scholar
  75. 75.
    Davies P.C.W. (2005). Quantum tunnelling time, American Journal of Physics 73, 23–7.CrossRefADSGoogle Scholar
  76. 76.
    Salecker H. and Wigner E.P. (1958). Quantum limitations of the measurement of space-time distances, Physical Review 109, 571–7MATHCrossRefADSMathSciNetGoogle Scholar
  77. 77.
    Peres A. (1980). Measurement of time by quantum clocks, American. Journal of Physics 48, 552–7.MathSciNetGoogle Scholar
  78. 78.
    Olkhovsky V.S., Recami E., and Salesi G. (2002). Superluminal tunnelling through two successive barriers, Europhysics Letters 57, 879–84.CrossRefADSGoogle Scholar
  79. 79.
    Davies P.C.W. (2004). Quantum mechanics and the equivalence principle, Classical and Quantum Gravity 21, 2761–72.MATHCrossRefADSMathSciNetGoogle Scholar
  80. 80.
    Davies P.C.W. (2004). Transit time of a freely falling quantum particle in a background gravitational field, Classical and Quantum Gravity 21, 5677–83.MATHCrossRefADSMathSciNetGoogle Scholar
  81. 81.
    Chiao R.Y. and Speliotopoulos A.D. (2003). Quantum interference to measure spacetime curvature: a proposed experiment at the intersection of quantum mechanics and general relativity, International Journal of Modern Physics D 12, 1627–32.CrossRefADSGoogle Scholar
  82. 82.
    Yamada N. and Takagi S. (1991). Quantum mechanical probabilities on a general spacetime surface: 2. Nontrivial example of non-interfering alternatives in quantum mechanics, Progress of Theoretical Physics 85, 599–615.CrossRefADSGoogle Scholar
  83. 83.
    Muga J.G., Brouard S., and Macias D. (1995). Time of arrival in quantum mechanics, Annals of Physics (New York) 240, 351–66.CrossRefADSMathSciNetGoogle Scholar
  84. 84.
    Delgado V. (1999). Quantum probability distribution of arrival times and probability current density, Physical Review A 59, 1010–20.CrossRefADSMathSciNetGoogle Scholar
  85. 85.
    Ali M.M., Majumdar A.S., Home D., and Sengupta S. (2003). Spin-dependent observable effect for free particles using an arrival time distribution, Physical Review A 68, 042105 and reference therein.Google Scholar
  86. 86.
    Leavens C.R. (1993). Arrival time distributions, Physics Letters A 178, 27–32.CrossRefADSGoogle Scholar
  87. 87.
    McKinnon W.R. and Leavens C.R. (1995). Distributions of delay times and transmission times in Bohm’s causal interpretation of quantum mechanics, Physical Review A 51, 2748–57.CrossRefADSGoogle Scholar
  88. 88.
    Leavens C.R. (1998). Time of arrival in quantum and Bohmian mechanics, Physical Review A 58, 840–7.CrossRefADSMathSciNetGoogle Scholar
  89. 89.
    Damborenea J.A., Egusquiza I.L., Hegerfeldt G.C., and Muga J.G. (2002). Measurement-based approach to quantum arrival times, Physical Review A 66, 052104.CrossRefADSGoogle Scholar
  90. 90.
    Hagerfeldt G.C., Seidel D., and Muga J.G. (2003). Quantum arrival times and operator normalization, Physical Review A 68, 022111.CrossRefADSGoogle Scholar
  91. 91.
    Kijowski J. (1974). On the time operator in quantum mechanics ands the Heisenberg uncertainty relations for energy and time, Reports on Mathematical Physics 6, 361–86.CrossRefMathSciNetADSGoogle Scholar
  92. 92.
    Pan A.K., Ali M.M., and Home D. (2006). Observability of the arrival time distribution using spin-rotator as a quantum clock, Physics Letters A 352, 296–303.CrossRefADSMATHGoogle Scholar
  93. 93.
    Hasegawa Y, Loidl R., Badurek G., Baron M., and Rauch H. (2003). Violation of Bell-like inequality in single-neutron interferometry, Nature 425, 45–8.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations