Advertisement

Bridging the Quantum-Classical Divide

Abstract

In Chapter 7, we studied the discussions between Einstein and supporters of Copenhagen, in particular Max Born and Wolfgang Pauli, concerning the classical limit of quantum theory and macroscopic quantum theory. We discussed the argument of Born and Pauli that the limiting procedure was straightforward, and that there were no special features in macroscopic quantum theory, such as macrorealism, that could make it different in principle from microscopic quantum theory.

Keywords

Quantum Theory Wave Packet Pure State Classical Limit Macroscopic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zeh H.D. (1970). On the interpretation of measurement in quantum theory, Foundations of Physics 1, 69–76.CrossRefADSGoogle Scholar
  2. 2.
    Zurek W.H. (1991). Decoherence and the transition from quantum to classical, Physics Today 44(10), 36–44.CrossRefGoogle Scholar
  3. 3.
    Kagan Y.A. and Leggett A.J. (1992). Quantum Tunnelling in Condensed Media. Amsterdam: Elsevier, Ch. 1.Google Scholar
  4. 4.
    Leggett A.J. (1993). The effect of dissipation on tunnelling, In: Proceedings of the 4th International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology. Tokyo:Japanese Journal of Applied Physics, pp. 10–17.Google Scholar
  5. 5.
    Joos E. and Zeh H.D. (1985). The emergence of classical properties through interaction with the environment, Zeitschrift für Physik B 59, 223–43.CrossRefADSGoogle Scholar
  6. 6.
    Omnès R. (1994). Interpretation of Quantum Mechanics. Princeton: Princeton University Press, Ch. 7.MATHGoogle Scholar
  7. 7.
    Feynman R.P. and Vernon F.L. (1963). The theory of a general quantum system interacting with a linear dissipative system, Annals of Physics (New York) 24, 118–73.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Caldeira A.O. and Leggett A.J. (1983). Quantum tunnelling in a dissipative system, Annals of Physics (New York) 149, 374–56; 153, 445 (1984).CrossRefADSGoogle Scholar
  9. 9.
    Leggett A.J. (1987). Quantum mechanics at the macroscopic level, In: Chance and Matter. (Souletie J. et al., (eds.)), Amsterdam: North-Holland, pp. 411–6.Google Scholar
  10. 10.
    Zurek W.H. (1993). Preferred states, predictability, classicality and the environment-induced decoherence, Progress of Theoretical Physics 89, 281–312.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Holland P. (1993). Quantum Theory of Motion. Cambridge: Cambridge University Press, Ch. 6.CrossRefGoogle Scholar
  12. 12.
    Bolivar A.O. (2004). Quantum-Classical Correspondence. Berlin: Springer.MATHGoogle Scholar
  13. 13.
    Leggett A.J. (1980). Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical. Physics (Supplement) 69, 80–100.MathSciNetGoogle Scholar
  14. 14.
    Leggett A.J. and Garg A. (1985). Quantum mechanics versus macroscopic realism-is the flux there when nobody looks? Physical Review Letters 54, 857–60.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Leggett A.J. (1998). In: Quantum Measurement: Beyond Paradox. (Healey R.A. and Hellman G., (eds.)) Minneapolis: University of Minnesota Press, pp. 1–29.Google Scholar
  16. 16.
    van der Wal C.H., ter Haar A.C.J., Wilhelm F.K., Schouten R.N., Harmans C.J.P.M., Orlando T.P., Lloyd S. and Mooji J.E. (2000). Science 290, 773–7.CrossRefADSGoogle Scholar
  17. 17.
    Friedman J.R., Patel V., Chen W, Tolpygo S.K. and Lukens J.E. (2000). Quantum superposition of distinct macroscopic states, Nature 406, 43–6.CrossRefADSGoogle Scholar
  18. 18.
    Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C, Esteve D. and Devoret M.H. (2002). Manipulating the quantum state of an electrical circuit, Science 296, 886–9.CrossRefADSGoogle Scholar
  19. 19.
    Berry M.V. and Mount K.E. (1972). Semiclassical approximations in wave mechanics, Reports of Progress in Physics 35, 315–97.CrossRefADSGoogle Scholar
  20. 20.
    Berry M.V. (1989). Quantum chaology not quantum chaos, Physica Scripta 40, 335–6.MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Liboff R.L. (1984). The correspondence principle revisited, Physics Today 37, 50–5.CrossRefGoogle Scholar
  22. 22.
    Morse P.M. and Feshbach H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill, p. 1643.MATHGoogle Scholar
  23. 23.
    Cabrera G.G. and Kiwi M. (1987). Large quantum-number states and the correspondence principle, Physical Review A 36, 2995–8.CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Messiah A. (1961). Quantum Mechanics. Amsterdam: North-Holland, Vol. 1, Ch. 6.Google Scholar
  25. 25.
    Andrews M. (1981). The spreading of wavepackets in quantum mechanics, Journal of Physics. A. 14, 1123–9.CrossRefGoogle Scholar
  26. 26.
    Peres A. (1993). Quantum Theory: Concepts and Methods. Dordrecht: Kluwer, Ch. 10.MATHGoogle Scholar
  27. 27.
    Holland P. (1993). The Quantum Theory of Motion. Cambridge: Cambridge University Press, p. 256.Google Scholar
  28. 28.
    Ballentine L.E., Gang Y. and Zibin J.P. (1994). Inadequacy of Ehrenfest theorem to characterise the classical regime, Physical Review A 50, 2854–9.CrossRefADSGoogle Scholar
  29. 29.
    Sewell G.L. (2002). Quantum Mechanics and its Emergent Macrophysics. Princeton: Princeton University Press.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations