Einstein and Quantum Information Theory


In the first decade of the twenty-first century, quantum information theory is indisputably a ‘hot topic’. A great deal of theoretical work is being performed in the main branches of the subject—quantum computation, quantum cryptography and quantum teleportation. Many different experimental techniques are being explored with the eventual aim of producing the first useful quantum computer, though it is recognised that this will almost certainly be decades away. In the other two main branches, though, considerable progress has been made; quantum teleportation has been demonstrated in the laboratory, while quantum cryptography has reached the stage where it is capable of being applied to ensure the security, say, of the financial district of a large city; this will probably happen quite soon.


Quantum Theory Quantum Computation Turing Machine Quantum Cryptography Quantum Teleportation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steane A.M. (1998). Quantum computing, Reports on Progress in Physics 61, 117–63.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Brown J.R. (2001). Quest for the Quantum Computer. Riverside, New Jersey: Simon and Schuster [hardback: Minds, Machines and the Multiverse The Quest for the Quantum Computer (2001)].Google Scholar
  3. 3.
    Williams C.P. and Clearwater S.H. (2000). Ultimate Zero and One. New York: Copernicus.Google Scholar
  4. 4.
    Nielsen M.A. and Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.MATHGoogle Scholar
  5. 5.
    Bouwmeester D., Ekert A., and Zeilinger A. ((eds.)) (2001). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Berlin: Springer-Verlag.Google Scholar
  6. 6.
    Stolze J. and Suter D. (2004). Quantum Computing: A Short Course from Theory to Experiment. Weinheim: Wiley.MATHGoogle Scholar
  7. 7.
    Nakahara M. and Salomaa M. (2005). Quantum Computation: From Linear Algebra to Physical Realizations. Bristol: Institute of Physics.Google Scholar
  8. 8.
    Le Bellec M. (2006). A Short Introduction to Quantum Information and Quantum Computation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. 9.
    Whitaker A. (2006). Einstein, Bohr and the Quantum Dilemma: From QuantumTheory to Quantum Information. Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Shor P.W. (1994). Polynomial-time algorithms for prime factorisation and discrete logarithms on a quantum computer, In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Goldwasser S., ed.) Piscataway, New Jersey: IEEE; also in SIAM Journal of Computing 26, 1484–509 (1997).Google Scholar
  11. 11.
    Cirac J.I. and Zoller P. (1995). Quantum computation with cold trapped ions, Physical Review Letters 74, 4091–4.ADSGoogle Scholar
  12. 12.
    Feynman R.P. (1999). There’s plenty of room at the bottom, In: Feynman and Computation. (Hey A.J.G., ed.) Reading, Massachusetts: Perseus.Google Scholar
  13. 13.
    Regis E. (1995). Nano! New York: Bantam.Google Scholar
  14. 14.
    Gleick J. (1992). Genius: The Life and Science of Richard Feynman. New York: Pantheon.Google Scholar
  15. 15.
    Mehra J. (1994). The Beat of a Different Drum: The Life and Science of Richard Feynman. Oxford: Oxford University Press.MATHGoogle Scholar
  16. 16.
    Gribbin J. and Gribbin M. (1997). Richard Feynman; A Life in Science. London: Viking.Google Scholar
  17. 17.
    Minsky M. (1999). Richard Feynman and cellular vacuum, in Ref. [18], pp. 117–30.Google Scholar
  18. 18.
    Hey A.J.G. (ed.) (1999). Feynman and Computation. Reading Massachusetts: Perseus.MATHGoogle Scholar
  19. 19.
    Feynman R.P. (1996). Feynman Lectures on Computation. (Hey A.J.G. and Allen R.W., (eds.)) Reading, Massachusetts: Addison-Wesley.Google Scholar
  20. 20.
    Hey A.J.G. (1999). Feynman and Computation, Contemporary Physics 40, 257–65.CrossRefADSGoogle Scholar
  21. 21.
    ter Haar D. (1967). The Old Quantum Theory. Oxford: Pergamon.Google Scholar
  22. 22.
    Feynman R.P. (1999). Simulating physics with computers, in Ref. [18], pp. 133–53; reprinted from International Journal of Theoretical Physics 21, 467-99 (1982).CrossRefMathSciNetGoogle Scholar
  23. 23.
    Landauer R. (1999). Information is inevitably physical, in Ref. [18], pp. 77–92.Google Scholar
  24. 24.
    Benioff P. (1982). Quantum mechanical Hamiltonian models of Turing machines, Journal of Statistical Physics 29, 515–46.MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Feynman R.P. (1999). Quantum mechanical computers, in Ref. [19], pp. 185–211; reprinted from Optics News (February 1985), pp. 11-20; Foundations of Physics 16, 507-32 (1986).CrossRefMathSciNetGoogle Scholar
  26. 26.
    Landauer R. (1961). Irreversibility and heat generation in the computing process, IBM Journal of Research and Development 5, 183–91.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Bennett C.H. (1973). Logical reversibility of computation, IBM Journal of Research and Development 17, 525–32.MATHCrossRefGoogle Scholar
  28. 28.
    Fredkin E. and Toffoli T. (1982). Conservative logic, International Journal of Theoretical Physics 21, 219–53.MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Deutsch D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society A 400, 97–117.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Bennett C.H. and Brassard G. (1984). Quantum cryptography: public-key distribution and coin tossing, Proceedings of 1984 IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, pp. 175–9.Google Scholar
  31. 31.
    Bennett C.H. and Brassard G. (1989). The dawn of a new era for quantum cryptography: the experimental prototype is working! Sigact News 20, 78–82.Google Scholar
  32. 32.
    Ekert A.K. (1991). Quantum cryptography based on Bell’s theorem, Physical Review Letters 67, 661–3.MATHADSMathSciNetGoogle Scholar
  33. 33.
    Bennett C.H. Brassard, G., Crepeau C., Jozsa R., Peres A., and Wooters W.K. (1993).Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 70, 1895–9.MATHADSGoogle Scholar
  34. 34.
    Bell J.S. (1981). Bertlmann’s socks and the nature of reality, Journal de Physique, Colloque C2, 42, 41–61; also in Ref. [35], pp. 139-58.CrossRefGoogle Scholar
  35. 35.
    Bell J.S. (2004). Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press.Google Scholar
  36. 36.
    Bell J.S. (1964). On the EPR paradox, Physics 1, 195–200; also in Ref. [35], pp. 14-21.Google Scholar
  37. 37.
    Whitaker M.A.B. (2000). Theory and experimentin the foundations of quantum theory, Progress in Quantum Electronics 24, 1–106.CrossRefADSGoogle Scholar
  38. 38.
    Clauser, J.F. (2002). Early history of Bell’s Theorem, In: Quantum [Un]speakables: From Bell to Quantum Information. (Bertlmann R.A. and Zeilinger A., (eds.)) Berlin: Springer, pp. 61–98.Google Scholar
  39. 39.
    Bernstein J. (1991). Quantum Profiles. Princeton: Princeton University Press.Google Scholar
  40. 40.
    Stapp, H.P. (1977). Are superluminal connections necessary? Nuovo Cimento 40B, 191–205.ADSGoogle Scholar
  41. 41.
    Bell J.S. (1986). In: The Ghost in the Atom. (Davies P.C.W. and Brown J.R., (eds.)) Cambridge: Cambridge University Press.Google Scholar
  42. 42.
    Gribbin J. (1990). The man who proved Einstein was wrong, New Scientist 128, 43–5.Google Scholar
  43. 43.
    Shannon C.E. (1948). A mathematical theory of communication, Bell Systems Technical Journal 27, 379–423, 623-56.MathSciNetMATHGoogle Scholar
  44. 44.
    Hamming R.W. (1986). Coding and Information Theory. 2nd edn., Englewood Cliffs, New Jersey: Prentice-Hall.MATHGoogle Scholar
  45. 45.
    Turing A.M. (1936-7). On computable numbers, with an application to the Entschei-dungsproblem, Proceedings of the London Mathematical Society 42, 230–65.MATHCrossRefGoogle Scholar
  46. 46.
    Hodges A. (1992). Alan Turing: The Enigma. London: Random House.Google Scholar
  47. 47.
    Deutsch D. (1997). The Fabric of Reality. London: Allen Lane.Google Scholar
  48. 48.
    Landauer R. (1991). Information is physical, Physics Today 44(5), 23–9.ADSCrossRefGoogle Scholar
  49. 49.
    Schumacher B. (1995). Quantum coding, Physical Review A 51, 2738–47.ADSMathSciNetGoogle Scholar
  50. 50.
    Grover L.K. (1996). A fast quantum mechanical algorithm for data base search, In: Proceedings of the 28th Annual Symposium on the Theory of Computation. New York: ACM Press, pp. 212–9.Google Scholar
  51. 51.
    Grover L.K. (1997). Quantum mechanics helps on searching for a needle in a haystack, Physical Review Letters 79, 325–8.CrossRefADSGoogle Scholar
  52. 52.
    Cleve R., Ekert A., Macchiavello C. and Mosca M. (1998). Quantum algorithms revisited, Proceedings of the Royal Society A 453, 339–54.CrossRefMathSciNetGoogle Scholar
  53. 53.
    Deutsch D. and Jozsa R. (1992). Rapid solution of problems by quantum computation, Proceedings of the Royal Society A 439, 552–8.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Deutsch D.(1985). Quantum theory as a universal physical theory, International Journal of Theoretical Physics 24, 1–41.Google Scholar
  55. 55.
    Steane A.M. (2003). A quantum computer only needs one universe, Studies in the History and Philosophy of Modern Physics 34, 469–78.CrossRefMathSciNetGoogle Scholar
  56. 56.
    Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390, 575–9.CrossRefADSGoogle Scholar
  57. 57.
    Boschi D., Branca S., De Martini F., Hardy L., and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 80, 1121–5.MATHCrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Furusawa A., Sorenson J.L., Braustein S.L., Fuchs C.A., Kimble H.J. and Polzik E.S. (1998). Unconditional quantum teleportation, Science 282, 706–9.CrossRefADSGoogle Scholar
  59. 59.
    Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., and Zeilinger A. (1999). Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Physical Review Letters 82, 1345–9.MATHCrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Tittel W., Riborby G., and Gisin N. (1998). Quantum cryptography, Physics World 11(3), 41–5.Google Scholar
  61. 61.
    Gisin N., Ribordy G.G., Tittel W., and Zbinden H. (2002). Quantum cryptography, Reviews of Modern Physics 74, 145–95.CrossRefADSGoogle Scholar
  62. 62.
    Bennett C.H., Brassard G., Breidbart S., and Wiesner S. (1982). Quantum cryptography, or unforgeable subway tokens, Advances in Cryptology Proceedings of Crypto 82. New York: Plenum, pp. 267–75.Google Scholar
  63. 63.
    Williamson M. and Vedral V. (2003). Eavesdropping on practical quantum cryptography, Journal of Modern Optics 50, 1989–2011.MATHADSMathSciNetGoogle Scholar
  64. 64.
    Devetak I. and Winter A. (2004). Relating quantum privacy and quantum coherence: an operational approach, Physical Review Letters 93, 080501.Google Scholar
  65. 65.
    Wootters W.K. and Zurek W.H. (1982). A single quantum cannot be cloned, Nature 299, 802–3.CrossRefADSGoogle Scholar
  66. 66.
    Dieks D. (1982). Communication by EPR devices, Physics Letters A 92, 271.CrossRefADSGoogle Scholar
  67. 67.
    Hughes R.J., Nordholt J.E., Derkacs D., and Peterson C.G. (2002). Practical free-space quantum key distribution over 10 km in daylight and at night, New Journal of Physics 4, article no. 43.Google Scholar
  68. 68.
    Gordon K.J., Fernandez V., Townsend P.D., and Buller G.S. (2004). A short wavelength gigahertz clocked fiber-optic quantum key distribution system, IEEE Journal of Quantum Electronics 40, 900–8.CrossRefADSGoogle Scholar
  69. 69.
    Tittel W., Brendel J., Zbinden H., and Gisin N. (1998). Violation of Bell’s inequalities by photons more than 10 km apart, Physical Review Letters 81, 3563–6.CrossRefADSGoogle Scholar
  70. 70.
    Tittel W., Brendel J., Zbinden H., and Gisin N. (2000). Quantum cryptography using entangled photons in energy-time Bell states, Physical Review Letters 84, 4737–40.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations