Skip to main content

Einstein and Quantum Information Theory

  • Chapter
Einstein’s Struggles with Quantum Theory
  • 1029 Accesses

Abstract

In the first decade of the twenty-first century, quantum information theory is indisputably a ‘hot topic’. A great deal of theoretical work is being performed in the main branches of the subject—quantum computation, quantum cryptography and quantum teleportation. Many different experimental techniques are being explored with the eventual aim of producing the first useful quantum computer, though it is recognised that this will almost certainly be decades away. In the other two main branches, though, considerable progress has been made; quantum teleportation has been demonstrated in the laboratory, while quantum cryptography has reached the stage where it is capable of being applied to ensure the security, say, of the financial district of a large city; this will probably happen quite soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steane A.M. (1998). Quantum computing, Reports on Progress in Physics 61, 117–63.

    Article  ADS  MathSciNet  Google Scholar 

  2. Brown J.R. (2001). Quest for the Quantum Computer. Riverside, New Jersey: Simon and Schuster [hardback: Minds, Machines and the Multiverse The Quest for the Quantum Computer (2001)].

    Google Scholar 

  3. Williams C.P. and Clearwater S.H. (2000). Ultimate Zero and One. New York: Copernicus.

    Google Scholar 

  4. Nielsen M.A. and Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  5. Bouwmeester D., Ekert A., and Zeilinger A. ((eds.)) (2001). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Berlin: Springer-Verlag.

    Google Scholar 

  6. Stolze J. and Suter D. (2004). Quantum Computing: A Short Course from Theory to Experiment. Weinheim: Wiley.

    MATH  Google Scholar 

  7. Nakahara M. and Salomaa M. (2005). Quantum Computation: From Linear Algebra to Physical Realizations. Bristol: Institute of Physics.

    Google Scholar 

  8. Le Bellec M. (2006). A Short Introduction to Quantum Information and Quantum Computation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  9. Whitaker A. (2006). Einstein, Bohr and the Quantum Dilemma: From QuantumTheory to Quantum Information. Cambridge: Cambridge University Press.

    Google Scholar 

  10. Shor P.W. (1994). Polynomial-time algorithms for prime factorisation and discrete logarithms on a quantum computer, In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Goldwasser S., ed.) Piscataway, New Jersey: IEEE; also in SIAM Journal of Computing 26, 1484–509 (1997).

    Google Scholar 

  11. Cirac J.I. and Zoller P. (1995). Quantum computation with cold trapped ions, Physical Review Letters 74, 4091–4.

    ADS  Google Scholar 

  12. Feynman R.P. (1999). There’s plenty of room at the bottom, In: Feynman and Computation. (Hey A.J.G., ed.) Reading, Massachusetts: Perseus.

    Google Scholar 

  13. Regis E. (1995). Nano! New York: Bantam.

    Google Scholar 

  14. Gleick J. (1992). Genius: The Life and Science of Richard Feynman. New York: Pantheon.

    Google Scholar 

  15. Mehra J. (1994). The Beat of a Different Drum: The Life and Science of Richard Feynman. Oxford: Oxford University Press.

    MATH  Google Scholar 

  16. Gribbin J. and Gribbin M. (1997). Richard Feynman; A Life in Science. London: Viking.

    Google Scholar 

  17. Minsky M. (1999). Richard Feynman and cellular vacuum, in Ref. [18], pp. 117–30.

    Google Scholar 

  18. Hey A.J.G. (ed.) (1999). Feynman and Computation. Reading Massachusetts: Perseus.

    MATH  Google Scholar 

  19. Feynman R.P. (1996). Feynman Lectures on Computation. (Hey A.J.G. and Allen R.W., (eds.)) Reading, Massachusetts: Addison-Wesley.

    Google Scholar 

  20. Hey A.J.G. (1999). Feynman and Computation, Contemporary Physics 40, 257–65.

    Article  ADS  Google Scholar 

  21. ter Haar D. (1967). The Old Quantum Theory. Oxford: Pergamon.

    Google Scholar 

  22. Feynman R.P. (1999). Simulating physics with computers, in Ref. [18], pp. 133–53; reprinted from International Journal of Theoretical Physics 21, 467-99 (1982).

    Article  MathSciNet  Google Scholar 

  23. Landauer R. (1999). Information is inevitably physical, in Ref. [18], pp. 77–92.

    Google Scholar 

  24. Benioff P. (1982). Quantum mechanical Hamiltonian models of Turing machines, Journal of Statistical Physics 29, 515–46.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Feynman R.P. (1999). Quantum mechanical computers, in Ref. [19], pp. 185–211; reprinted from Optics News (February 1985), pp. 11-20; Foundations of Physics 16, 507-32 (1986).

    Article  MathSciNet  Google Scholar 

  26. Landauer R. (1961). Irreversibility and heat generation in the computing process, IBM Journal of Research and Development 5, 183–91.

    Article  MathSciNet  MATH  Google Scholar 

  27. Bennett C.H. (1973). Logical reversibility of computation, IBM Journal of Research and Development 17, 525–32.

    Article  MATH  Google Scholar 

  28. Fredkin E. and Toffoli T. (1982). Conservative logic, International Journal of Theoretical Physics 21, 219–53.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Deutsch D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society A 400, 97–117.

    Article  MATH  MathSciNet  Google Scholar 

  30. Bennett C.H. and Brassard G. (1984). Quantum cryptography: public-key distribution and coin tossing, Proceedings of 1984 IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, pp. 175–9.

    Google Scholar 

  31. Bennett C.H. and Brassard G. (1989). The dawn of a new era for quantum cryptography: the experimental prototype is working! Sigact News 20, 78–82.

    Google Scholar 

  32. Ekert A.K. (1991). Quantum cryptography based on Bell’s theorem, Physical Review Letters 67, 661–3.

    MATH  ADS  MathSciNet  Google Scholar 

  33. Bennett C.H. Brassard, G., Crepeau C., Jozsa R., Peres A., and Wooters W.K. (1993).Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 70, 1895–9.

    MATH  ADS  Google Scholar 

  34. Bell J.S. (1981). Bertlmann’s socks and the nature of reality, Journal de Physique, Colloque C2, 42, 41–61; also in Ref. [35], pp. 139-58.

    Article  Google Scholar 

  35. Bell J.S. (2004). Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press.

    Google Scholar 

  36. Bell J.S. (1964). On the EPR paradox, Physics 1, 195–200; also in Ref. [35], pp. 14-21.

    Google Scholar 

  37. Whitaker M.A.B. (2000). Theory and experimentin the foundations of quantum theory, Progress in Quantum Electronics 24, 1–106.

    Article  ADS  Google Scholar 

  38. Clauser, J.F. (2002). Early history of Bell’s Theorem, In: Quantum [Un]speakables: From Bell to Quantum Information. (Bertlmann R.A. and Zeilinger A., (eds.)) Berlin: Springer, pp. 61–98.

    Google Scholar 

  39. Bernstein J. (1991). Quantum Profiles. Princeton: Princeton University Press.

    Google Scholar 

  40. Stapp, H.P. (1977). Are superluminal connections necessary? Nuovo Cimento 40B, 191–205.

    ADS  Google Scholar 

  41. Bell J.S. (1986). In: The Ghost in the Atom. (Davies P.C.W. and Brown J.R., (eds.)) Cambridge: Cambridge University Press.

    Google Scholar 

  42. Gribbin J. (1990). The man who proved Einstein was wrong, New Scientist 128, 43–5.

    Google Scholar 

  43. Shannon C.E. (1948). A mathematical theory of communication, Bell Systems Technical Journal 27, 379–423, 623-56.

    MathSciNet  MATH  Google Scholar 

  44. Hamming R.W. (1986). Coding and Information Theory. 2nd edn., Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  45. Turing A.M. (1936-7). On computable numbers, with an application to the Entschei-dungsproblem, Proceedings of the London Mathematical Society 42, 230–65.

    Article  MATH  Google Scholar 

  46. Hodges A. (1992). Alan Turing: The Enigma. London: Random House.

    Google Scholar 

  47. Deutsch D. (1997). The Fabric of Reality. London: Allen Lane.

    Google Scholar 

  48. Landauer R. (1991). Information is physical, Physics Today 44(5), 23–9.

    Article  ADS  Google Scholar 

  49. Schumacher B. (1995). Quantum coding, Physical Review A 51, 2738–47.

    ADS  MathSciNet  Google Scholar 

  50. Grover L.K. (1996). A fast quantum mechanical algorithm for data base search, In: Proceedings of the 28th Annual Symposium on the Theory of Computation. New York: ACM Press, pp. 212–9.

    Google Scholar 

  51. Grover L.K. (1997). Quantum mechanics helps on searching for a needle in a haystack, Physical Review Letters 79, 325–8.

    Article  ADS  Google Scholar 

  52. Cleve R., Ekert A., Macchiavello C. and Mosca M. (1998). Quantum algorithms revisited, Proceedings of the Royal Society A 453, 339–54.

    Article  MathSciNet  Google Scholar 

  53. Deutsch D. and Jozsa R. (1992). Rapid solution of problems by quantum computation, Proceedings of the Royal Society A 439, 552–8.

    Article  MathSciNet  Google Scholar 

  54. Deutsch D.(1985). Quantum theory as a universal physical theory, International Journal of Theoretical Physics 24, 1–41.

    Google Scholar 

  55. Steane A.M. (2003). A quantum computer only needs one universe, Studies in the History and Philosophy of Modern Physics 34, 469–78.

    Article  MathSciNet  Google Scholar 

  56. Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390, 575–9.

    Article  ADS  Google Scholar 

  57. Boschi D., Branca S., De Martini F., Hardy L., and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 80, 1121–5.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Furusawa A., Sorenson J.L., Braustein S.L., Fuchs C.A., Kimble H.J. and Polzik E.S. (1998). Unconditional quantum teleportation, Science 282, 706–9.

    Article  ADS  Google Scholar 

  59. Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., and Zeilinger A. (1999). Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Physical Review Letters 82, 1345–9.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Tittel W., Riborby G., and Gisin N. (1998). Quantum cryptography, Physics World 11(3), 41–5.

    Google Scholar 

  61. Gisin N., Ribordy G.G., Tittel W., and Zbinden H. (2002). Quantum cryptography, Reviews of Modern Physics 74, 145–95.

    Article  ADS  Google Scholar 

  62. Bennett C.H., Brassard G., Breidbart S., and Wiesner S. (1982). Quantum cryptography, or unforgeable subway tokens, Advances in Cryptology Proceedings of Crypto 82. New York: Plenum, pp. 267–75.

    Google Scholar 

  63. Williamson M. and Vedral V. (2003). Eavesdropping on practical quantum cryptography, Journal of Modern Optics 50, 1989–2011.

    MATH  ADS  MathSciNet  Google Scholar 

  64. Devetak I. and Winter A. (2004). Relating quantum privacy and quantum coherence: an operational approach, Physical Review Letters 93, 080501.

    Google Scholar 

  65. Wootters W.K. and Zurek W.H. (1982). A single quantum cannot be cloned, Nature 299, 802–3.

    Article  ADS  Google Scholar 

  66. Dieks D. (1982). Communication by EPR devices, Physics Letters A 92, 271.

    Article  ADS  Google Scholar 

  67. Hughes R.J., Nordholt J.E., Derkacs D., and Peterson C.G. (2002). Practical free-space quantum key distribution over 10 km in daylight and at night, New Journal of Physics 4, article no. 43.

    Google Scholar 

  68. Gordon K.J., Fernandez V., Townsend P.D., and Buller G.S. (2004). A short wavelength gigahertz clocked fiber-optic quantum key distribution system, IEEE Journal of Quantum Electronics 40, 900–8.

    Article  ADS  Google Scholar 

  69. Tittel W., Brendel J., Zbinden H., and Gisin N. (1998). Violation of Bell’s inequalities by photons more than 10 km apart, Physical Review Letters 81, 3563–6.

    Article  ADS  Google Scholar 

  70. Tittel W., Brendel J., Zbinden H., and Gisin N. (2000). Quantum cryptography using entangled photons in energy-time Bell states, Physical Review Letters 84, 4737–40.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Einstein and Quantum Information Theory. In: Einstein’s Struggles with Quantum Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71520-9_11

Download citation

Publish with us

Policies and ethics