Non-standard Quantum Interpretations


From the time of Bohr’s Como paper in 1928, the Copenhagen interpretation reigned supreme for several decades. Indeed supporters of the Copenhagen interpretation, such as Leon Rosenfeld and Rudolf Peierls,1 disliked even the use of the term ‘Copenhagen interpretation’, for it suggested that this was one interpretation, possibly among many conceivable ones. For them, the conceptual structures of Bohr and Heisenberg were not an adjunct to quantum theory, but a clear and indispensable component of the theory. Einstein, as we have seen at length, disliked the Copenhagen interpretation. Perhaps as much as or even more then the interpretation itself, he disliked the fact that its supporters considered it immune from criticism, so that no questioning would be taken seriously, and certainly any alternative interpretation would be ruled out of court without being given even fair attention.


Quantum Mechanic Quantum Theory Hide Variable Theory Copenhagen Interpretation Arrival Time Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenfeld L. (1962). In: Observation and Interpretation in the Philosophy of Physics. (Körner S., ed.) New York: Dover; Peierls, R. (1986). In: The Ghost in the Atom. Cambridge: Cambridge University Press.Google Scholar
  2. 2.
    Margenau H. (1936). Quantum mechanical description, Physical Review 49, 240–2.MATHCrossRefADSGoogle Scholar
  3. 3.
    Everett H. (1957). ‘Relative state’ formulation of quantum mechanics, Reviews of Modern Physics 29, 454–62.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Squires EJ. (1989). An attempt to understand the many-worlds interpretation of quantum theory. In: Quantum Theory without Reduction. (Cini M. and Levy-Leblond J.M., (eds.)) Bristol, UK: Adam Hilger, pp. 151–61.Google Scholar
  5. 5.
    Squires EJ. (1993). Quantum theory and the relation between the conscious mind and the physical world, Synthese 97, 109-23.Google Scholar
  6. 6.
    Whitaker A. (2006). Einstein, Bohr and the Quantum Dilemma: From Quantum Theory to Quantum Information. 2nd edn., Cambridge: Cambridge University Press.Google Scholar
  7. 7.
    De Witt B.S. and Graham N. (1973). Many-Worlds Interpretation of Quantum Mechanics. Princeton: Princeton University Press, pp. 155–65.Google Scholar
  8. 8.
    Ballentine L.E. (1973). Can the statistical postulate of quantum theory be derived?—a critique of the many-universes interpretation, Foundations of Physics 3, 229–40.CrossRefADSGoogle Scholar
  9. 9.
    Deutsch D. (1985). Quantum theory as a universal physical theory, International Journal of Theoretical Physics 24, 1–41.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Lockwood M. (1989). Mind, Brain, and the Quantum. Oxford: Blackwell, Ch. 13.Google Scholar
  11. 11.
    Primas H. (1981). Chemistry, Quantum Mechanics, and Reductionism. Berlin: Springer-Verlag, Sect. 3.6.Google Scholar
  12. 12.
    de Broglie L. (1926). Possibility of relating interference and diffraction phenomena to the theory of light quanta, Comptes Rendus 183, 447–8.MATHGoogle Scholar
  13. 13.
    de Broglie L. (1926). Remarques sur ta nouvellle mecanique ondulatoire [Remarks on the new wave mechanics] Comptes Rendus 184, 272–4Google Scholar
  14. 14.
    de Broglie L. (1927). La mecanique ondulatoire at la structure atomique de lamatiére et du rayonnement [Wave mechanics and the atomic structure of material and waves], Journal de Physique et le Radium 8, 225–41CrossRefGoogle Scholar
  15. 15.
    Jammer M. (1974). Philosophy of Quantum Mechanics. New York: Wiley, pp. 44–9.Google Scholar
  16. 16.
    de Broglie L. (1928). In: Electrons et Photons: Paris: Gauthier-Villars, pp. 105–132.Google Scholar
  17. 17.
    Pauli W (1928). In: Electrons et Photons. Paris: Gautier-Villars, pp. 280–282.Google Scholar
  18. 18.
    Cushing J.T. (1994). Quantum Mechanics ∶ Historical Contingency and the Copenhegen Hegemony. Chicago: University of Chicago Press, Chs. 6, 10 and 11.Google Scholar
  19. 19.
    Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, Chs. 1 and 7.Google Scholar
  20. 20.
    Beller M. (1996). The rhetoric of antirealism and the Copenhagen spirit, Philosophy of Science 63, 183–204.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bohm D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, Physical Review 85, 166–79, 180–93.CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Holland P. (1993). Quantum Theory of Motion. Cambridge: Cambridge University Press, Cambridge, pp. 15–20.Google Scholar
  23. 23.
    Bohm D. and Hiley B.J. (1982). The de Broglie pilot wave theory and the further development of new insights arising out of it, Foundations of Physics 12, 1001–16.CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Bohm D. and Hiley B.J. (1993). The Undivided Universe. London: Routledge.Google Scholar
  25. 25.
    Cushing J.T. (1994). Quantum Mechanics ∶ Historical Contigency and the Copenhegen Hegemony. Chicago: University of Chicago Press, Ch. 4.Google Scholar
  26. 26.
    Albert D.Z. (1992). Quantum Mechanics and Experience. Cambridge: Harvard University Press, Ch. 7; Bohm’s alternative to quantum mechanics, Scientific American 270(5), 32-9 (1994).Google Scholar
  27. 27.
    Cushing J.T., Fine A. and Goldstein S. ((eds.)) (1996). Bohmian Mechanics and Quantum Theory: An Appraisal. Dordrecht: Kluwer.Google Scholar
  28. 28.
    Holland P. (1999). Uniqueness of paths in quantum mechanics, Physical Review A60, 4326–30.CrossRefADSGoogle Scholar
  29. 29.
    Ali M.M.,. Majumdar A.S., Home D. and Sengupta S. (2003). Spin-dependent observable effect for free particles using the arrival time distribution, Physical Review A 68, 042105.CrossRefADSGoogle Scholar
  30. 30.
    Pan A.K., Ali M.M. and Home D. (2006). Observability of the arrival time distribution using spin-rotator as a quantum clock, Physics Letters A 352, 296–303.CrossRefADSGoogle Scholar
  31. 31.
    Colijn C. and Vrscay E.R. (2002). Spin-dependent Bohm trajectories for hydrogen eigenstates, Physics Letters A 300, 334–40.MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Colijn C. and Vrscay E.R. (2003). Spin-dependent Bohm trajectories associated with an electronic transition in hydrogen, Journal of Physics A 36,4689–702.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Holland P.R. and Philippidis C. (2003). Implications of Lorentz invariance for the guidance equation of two-slit quantum interference, Physical Review A 67, 062105.CrossRefADSGoogle Scholar
  34. 34.
    Roy S.M. and Singh V. (1995). Causal quantum mechanics treating position and momentum symmetrically, Modern Physics Letters A 10, 709–16.MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Roy S.M. and Singh V. (1999). Maximally realistic causal quantum mechanics, Physics Letters A 255, 201–8.CrossRefADSGoogle Scholar
  36. 36.
    Holland P.R. (2005). Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation, Annals of Physics (New York) 315, 505–31.MATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Holland P.R. (2005). Hydrodynamic construction of the electromagnetic field, Proceedings of the Royal Society A 461, 3659–79.CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Bell J.S. (1981). Quantum mechanics for cosmologists, In: Quantum Gravity 2. (Isham C, Penrose R. and Sciama D., (eds.)), Oxford: Clarendon, pp. 611–37; also in Ref. [39], pp. 117-38.Google Scholar
  39. 39.
    Bell J.S. (2004). Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press.Google Scholar
  40. 40.
    Bell J.S. (1986). Six possible worlds of quantum mechanics, In: Proceedings of the Nobel Symposium 65: Possible Worlds in Arts and Sciences (Allén S., ed.) Stockholm: Nobel Foundation; also in Ref. [39], pp. 181-95.Google Scholar
  41. 41.
    Gisin N. (1990). Weinberg non-linear quantum mechanics and supraluminal communications, Physics Letters A 143, 1–2.CrossRefADSGoogle Scholar
  42. 42.
    Polchinski J. (1991). Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox, Physical Review Letters 66, 397–400.MATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Weinberg S. (1993). Dreams of a Final Theory. London: Vintage, pp.69–70.MATHGoogle Scholar
  44. 44.
    Ghirardi G.C., Rimini A., and Weber T. (1985). In: Quantum Probability and Applications. (Accardi L. and Von Waldenfels W., (eds.)) Berlin: Springer-Verlag, pp. 223–32.CrossRefGoogle Scholar
  45. 45.
    Ghirardi G.C., Rimini A., and Weber T. (1986). Unified dynamics for microscopic and macroscopic systems, Physical Review D 34,470–91.CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Bell J.S. (1987). Are there quantum jumps? In: Schrodinger: Centenary of a Polymath. Cambridge: Cambridge University Press; also in Ref. [39], pp. 201-12.Google Scholar
  47. 47.
    Bell J.S. (1990). Against ‘measurement’, Physics World 3(8), 33–40; also in Ref. [39] (2nd edn.), pp. 213-31.Google Scholar
  48. 48.
    Home D. (1997). Conceptual Foundations of Quantum Physics: An Overview from Modern Perspectives. New York: Plenum, pp. 97–119.Google Scholar
  49. 49.
    Griffiths R.B. (1984). Consistent histories and the interpretation of quantum mechanics, Journal of Statistical Physics 36, 219–72.MATHCrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Griffiths R.B. (2003). Consistent Quantum Theory. Cambridge: Cambridge University Press.Google Scholar
  51. 51.
    Omnés R. (1992). Consistent interpretations of quantum mechanics, Reviews of Modern Physics 64, 339–82.CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Omnés R. (1999). Quantum Philosophy: Understanding and Interpreting Contemporary Science. Princeton: Princeton University Press.Google Scholar
  53. 53.
    Gell-Mann M. and Hartle J.B. (1993). Classical equations for quantum systems, Physical Review D 47, 3345–82.CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Halliwell J. (1994). Aspects of the decoherent histories approach to quantum mechanics, In: Stochastic Evolution of Quantum States in Open Systems and Measurement Processes. (Diósi L. and Lukáks B., (eds.)) Singapore: World Scientific, pp. 54–68.Google Scholar
  55. 55.
    Peierls R. (1991). In defence of measurement, Physics World 3(1), 19–20.Google Scholar
  56. 56.
    Mermin N.D. (2002). Whose knowledge? In: Quantum [Un]speakables: From Bell to Quantum Information. (Bertlmann R.A. and Zeilinger A., (eds.)) Berlin: Springer, pp. 271–80.Google Scholar
  57. 57.
    Brukner C. and Zeilinger A. (1999). Operationally invariant information in quantum measurements, Physical Review Letters 83, 3354–7.MATHCrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Nelson E. (1967). Dynamical Theories of Brownian Motion. Princeton: Princeton University Press.MATHGoogle Scholar
  59. 59.
    Nelson E. (1985). Quantum Fluctuations. Princeton: Princeton University Press.MATHGoogle Scholar
  60. 60.
    Santos E. (1991). Comment on’ source of vacuum electromagnetic zero-point energy’, Physical Review A 44, 3383–4.CrossRefADSGoogle Scholar
  61. 61.
    Wallstrom T.C. (1994). Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equation, Physical Review A49, 1613–7.CrossRefADSMathSciNetMATHGoogle Scholar
  62. 62.
    Bacciagaluppi G. (1999). Nelsonian mechanics revisited, Foundations of Physics Letters 12, 1–16.CrossRefMathSciNetADSGoogle Scholar
  63. 63.
    Gisin N. and Percival I.C. (1992). The quantum-state diffusion model applied to open systems, Journal of Physics A 25, 5677–91.MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Percival I.C. (1998). Quantum State Diffusion. Cambridge: Cambridge University Press.MATHGoogle Scholar
  65. 65.
    Machida S. and Namiki M. (1980). Theory of measurement in quantum mechanics: mechanism of reduction of wave packet, Progress of Theoretical Physics 63, 1457–73, 1833-47.CrossRefADSGoogle Scholar
  66. 66.
    Namiki M. (1986). Annals of the New York Academy of Sciences 480, 78.CrossRefADSGoogle Scholar
  67. 67.
    Namiki M. (1988). Many-Hilbert-spaces theory of quantum measurements, Foundations of Physics 18, 29–55.CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    Namiki M. and Pasacazio S. (1993). Quantum theory of measurement based on the many-Hilbert-spaces approach, Physics Reports 231, 301–411.CrossRefADSGoogle Scholar
  69. 69.
    Penrose R. (1994). Shadows of the Mind. Oxford: Oxford University Press, Ch. 6.Google Scholar
  70. 70.
    Penrose R. (2000). Wavefunction collapse as a real gravitational effect, In: Mathematical Physics 2000. (Fokas A., Kibble T.W.B., Grigouriou A. and Zekarlinski B., (eds.)), London: Imperial College Press, pp. 266–82.CrossRefGoogle Scholar
  71. 71.
    Penrose R. (1998). Quantum computation, entanglement and state reduction, Philosophical Transactions of the Royal Society A 356, 1927–39.ADSMathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Penrose R. (2004). The Road to Reality. London: Jonathan Cape, Ch. 30.Google Scholar
  73. 73.
    Karolyhazy F., Frenkel A., and Lukács B. (1986). On the possible role of gravity in the reduction of the wave function, In: Quantum Concepts in Space and Time. (Penrose R. and Isham C.J., (eds.)) Oxford: Oxford University Press, pp. 109–28.Google Scholar
  74. 74.
    Diósi L. (1984). Gravitation and QM localization of macro-objects, Physics Letters A 105, 199–202.CrossRefADSGoogle Scholar
  75. 75.
    Penrose R. (2004). The Road to Reality. London: Jonathan Cape, p. 867.Google Scholar
  76. 76.
    Prigogine I. and George C. (1983). The second law as a selection principle∶the microscopic theory of dissipative processes in quantum systems, Proceedings of the National Academy of Sciences 80, 4590–4.MATHCrossRefADSMathSciNetGoogle Scholar
  77. 77.
    Petrosky T. and Prigogine I. (1997). The Liouville space extension of quantum mechanics, Advances in Chemical Physics 99, 1–120.CrossRefMathSciNetGoogle Scholar
  78. 78.
    Misra B., Prigogine I. and Courbage M. (1979). Lyapounov variable ∶ entropy and measurement in quantum mechanics, Proceedings of the National Academy of Sciences 76, 4768–72.CrossRefADSMathSciNetGoogle Scholar
  79. 79.
    Prigogine I. and Stengers I. (1984). Order Out of Chaos. New York: Bantam Books.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations