The Philosophical Background Einstein and Mach


Following the 25 years of the ‘old quantum theory’ in which results of great importance were discovered, but by methods that lacked any consistent foundation,1 the modern rigorous form of quantum theory was produced in the mid-1920s.2,3 Werner Heisenberg’s matrix mechanics of mid-19254,5 was followed by Erwin Schrödinger’s sequence of papers developing the mathematically analogous wave mechanics, which was published through the first half of 1926.6,7 In September 1927, in a lecture at Como,8 Niels Bohr responded to concerns about the conceptual structure of the new theory by announcing his ideas on complementarity, which were to constitute what became known as the Copenhagen interpretation of quantum theory. Einstein heard Bohr expound these ideas the following month at the fifth Solvay congress in Brussels, and, at least by that stage, had clearly concluded that Bohr’s views were unacceptable9; Einstein would argue against them for the remainder of his life.


Quantum Theory Special Relativity Classical Thermodynamic Absolute Space Philosophical Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ter Haar D. (1967). The Old Quantum Theory. Oxford: Pergamon.MATHGoogle Scholar
  2. 2.
    Jammer M. (1989). The Conceptual Development of Quantum Mechanics. New York: 1st ed., McGraw-Hill. New York: 2nd edn., Tomash, Los Angeles/American Institute of Physics.Google Scholar
  3. 3.
    Mehra J. and Rechenberg H. (1982–87). The Historical Development of Quantum Theory. New York: McGraw-Hill.Google Scholar
  4. 4.
    Heisenberg W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33, 879–93; English translation, Quantum theoretical reinterpretation of kinematic and mechanical relations, in Ref. 5, pp. 261–76.CrossRefADSGoogle Scholar
  5. 5.
    van der Waerden B.L. (1967). Sources of Quantum Mechanics. Amsterdam: North-Holland.MATHGoogle Scholar
  6. 6.
    Schrödinger E. (1926). Quantisierung als Eigenwertproblem (4 parts), Annalen der Physik 79, 361–76; 79, 489–527; 80, 437–90; 81, 109–39; English translation, Quantization as a problem of proper values, in Ref. 7.CrossRefGoogle Scholar
  7. 7.
    Schrödinger E. (1928). Collected Papers on Wave Mechanics. London: Blackie.MATHGoogle Scholar
  8. 8.
    Bohr N. (1928). The quantum postulate and the recent development of atomic theory, Nature (Supplement) 121, 580–90; reprinted in N. Bohr, Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press, 1934.MATHCrossRefADSGoogle Scholar
  9. 9.
    Electrons et Photons. (1928). Reports and Discussions of the 5th Solvay Conference Paris: Gauthier-Villar.Google Scholar
  10. 10.
    Frank P.G. (1949). In: Albert Einstein: Philosopher-Scientist (P.A. Schilpp, ed.) New York: Tudor, pp. 269–86.Google Scholar
  11. 11.
    Blackmore J.T. (1972). Ernst Mach: His Work, Life and Influence. Berkeley: University of California Press.Google Scholar
  12. 12.
    Frank P.G. (1947). Einstein, His Life and Time. New York: Knopf.Google Scholar
  13. 13.
    Einstein A. (1949). Autobiographical notes, In: Albert Einstein: Philosopher-Scientist. (P.A. Schilpp, ed.), New York: Tudor, pp. 2–95.Google Scholar
  14. 14.
    Holton G.J. (1968). Mach, Einstein and the search for reality, Daedalus 97, 636–73; reprinted in Gerard Holton, Thematic Origins of Scientific Thought: Kepler to Einstein (Cambridge, Massachusetts, Harvard University Press) Ch. 8 in 1st ed. (1973), Ch. 7 in 2nd ed. (1988).Google Scholar
  15. 15.
    Jammer M. (1999). Einstein and Religion: Physics and Theology. Princeton: Princeton University Press.Google Scholar
  16. 16.
    Mach E. (1893). The Science of Mechanics: A Historical and Critical Account of its Development Chicago: Open Court.Google Scholar
  17. 17.
    Barbour J. and Pfister H. ((eds.)) (1995). Mach’s Principle: from Newton’s Bucket to Quantum Gravity. Boston: Birkhaüser.MATHGoogle Scholar
  18. 18.
    Einstein A. (1905). Elektrodynamik bewegter Korper [The electrodynamics of moving bodies], Annalen der Physik, 17, 891–921 (1905).CrossRefADSGoogle Scholar
  19. 19.
    Mehra J. (1999). Einstein, Physics and Reality. Singapore: World Scientific.MATHCrossRefGoogle Scholar
  20. 20.
    Mach E. (1909). Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Leipzig: Barth. (2nd ed.); translated as History and Root of the Principle of Conservation of Energy (Chicago: Open Court 1911).Google Scholar
  21. 21.
    Einstein A. (1912). Gibt es eine Gravitationswirkung die der elektrodynamischen Induktionswirkung analog ist? [Is there a gravitational analogue of the effect of elecrodynamic induction?], Vierteljahrsschrift für gerichtliche Medizin 44, 37–40; translation given by C. Hoefer in Einstein’s formulations of Mach’s principle, Ref. 17, pp. 67–86.Google Scholar
  22. 22.
    Einstein A. (1912). Prinzipielles zur allgemeinen Relativatätstheorie [Principle points of the general theory of relativity], Annalen der Physik 55, 241–4 (1912); translation by C. Hoefer as for Ref. [21].ADSGoogle Scholar
  23. 23.
    Einstein A. (1922). The Meaning of Relativity. Princeton: Princeton University Press, and later revised editions.MATHCrossRefGoogle Scholar
  24. 24.
    Einstein A. (1916). Ernst Mach, Physikalische Zeitschrift 17, 101–4.ADSGoogle Scholar
  25. 25.
    Wolters G. (1987). Mach I, Mach II, Einstein und die Relativatätstheorie. Berlin: de Gruyter.Google Scholar
  26. 26.
    Cercignani C. (1998). Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford: Oxford University Press.MATHGoogle Scholar
  27. 27.
    Stachel J. et al. ((eds.)) (1987). The Collected Papers of Albert Einstein. Princeton: Princeton University Press, Vol. 1, p. 230.MATHGoogle Scholar
  28. 28.
    Einstein A. (1905). Die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [Motion of suspended particles in kinetic theory], Annalen der Physik 17, 549–60.CrossRefADSGoogle Scholar
  29. 29.
    Holton G. (1980). Einstein’s scientific programme: the formative years, In: Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein (H. Woolf, ed.). Reading, Massachusetts: Addison-Wesley, pp. 49–65.Google Scholar
  30. 30.
    Speziali P. (ed.) (1972). Albert Einstein—Michele Besso Correspondance 1903–1955. Paris: Hermann.Google Scholar
  31. 31.
    Pais A. (1982). ’subtle is the Lord’: The Science and the Life of Albert Einstein. Oxford: Clarendon.Google Scholar
  32. 32.
    Einstein A. (1954). Principles of research, In: Ideas and Opinions New York: Crown, pp. 224–27.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations