Skip to main content

Lymphatic Vascular System and Lymphangiogenesis

  • Chapter
Book cover Angiogenesis
  • 2811 Accesses

The lymphatic system plays an important role in the maintenance of tissue fluid homeostasis, in the afferent phase of the immune response, and in metastatic cancer spread. However, the scientific exploration of the lymphatic system has lagged behind that of the blood vascular system, largely due to the absence of specific markers for lymphatic endothelium and to the paucity of knowledge about the molecular regulators of its development and function. The recent identification of genes that specifically control lymphatic development and the growth of lymphatic vessels (lymphangiogenesis), as well as the discovery of novel lymphatic endothelium-specific markers, have now provided important insights into the molecular mechanisms that control lymphatic growth and function. Studies of genetic mouse models have led to a new molecular model for embryonic lymphatic vascular development, and they have identified molecular pathways whose mutational inactivation leads to human diseases associated with lymphedema. Moreover, recent evidence indicates that malignant tumors can directly promote lymphangiogenesis and lymphatic metastasis, and that lymphangiogenesis also has a major role in chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asellius G. De lactibus sive lacteis venis. Milan 1627:Mediolani.

    Google Scholar 

  2. Gerli R, Solito R, Weber E, et al. Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics. Lymphology 2000;33:148–57.

    PubMed  CAS  Google Scholar 

  3. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1902;1:367–91.

    Article  Google Scholar 

  4. Huntington GS, McClure CFW. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 1910;10:177–311.

    Article  Google Scholar 

  5. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. Embo J 2002;21:1505–13.

    Article  PubMed  CAS  Google Scholar 

  6. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999;98:769–78.

    Article  PubMed  CAS  Google Scholar 

  7. Yaniv K, Isogai S, Castranova D, et al. Live imaging of lymphatic development in the zebrafish. Nat Med 2006;12:711–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ny A, Koch M, Schneider M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005;11:998–1004.

    PubMed  CAS  Google Scholar 

  9. Schneider M, Othman-Hassan K, Christ B, et al. Lymphangioblasts in the avian wing bud. Dev Dyn 1999;216:311–9.

    Article  PubMed  CAS  Google Scholar 

  10. Wilting J, Aref Y, Huang R, et al. Dual origin of avian lymphatics. Dev Biol 2006;292:165–73.

    Article  PubMed  CAS  Google Scholar 

  11. He Y, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004;64:3737–40.

    Article  PubMed  CAS  Google Scholar 

  12. Salven P, Mustjoki S, Alitalo R, et al. VEGFR3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003;101:168–72.

    Article  PubMed  CAS  Google Scholar 

  13. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 2005;106:4184–90.

    Article  PubMed  CAS  Google Scholar 

  14. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005;115:2363–72.

    Article  PubMed  CAS  Google Scholar 

  15. Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006;12:230–4.

    Article  PubMed  CAS  Google Scholar 

  16. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002;161:947–56.

    PubMed  CAS  Google Scholar 

  17. Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004;113:1040–50.

    PubMed  CAS  Google Scholar 

  18. Hirakawa S, Hong YK, Harvey N, et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003;162:575–86.

    PubMed  CAS  Google Scholar 

  19. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001;194:797–808.

    Article  PubMed  CAS  Google Scholar 

  20. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. Embo J 2001;20:4762–73.

    Article  PubMed  CAS  Google Scholar 

  21. Podgrabinska S, Braun P, Velasco P, et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 2002;99:16069–74.

    Article  PubMed  CAS  Google Scholar 

  22. Kreuger J, Nilsson I, Kerjaschki D, et al. Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol 2006;26:1073–8.

    Article  PubMed  CAS  Google Scholar 

  23. Liersch R, Nay F, Lu L, et al. Induction of lymphatic endothelial cell differentiation in embryoid bodies. Blood 2006;107:1214–6.

    Article  PubMed  CAS  Google Scholar 

  24. Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 1997;188:96–109.

    Article  PubMed  CAS  Google Scholar 

  25. Kuchler AM, Gjini E, Peterson-Maduro J, et al. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 2006;16:1244–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995;92:3566–70.

    Article  PubMed  CAS  Google Scholar 

  27. Partanen TA, Arola J, Saaristo A, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR3, in fenestrated blood vessels in human tissues. Faseb J 2000; 14:2087–96.

    Article  PubMed  CAS  Google Scholar 

  28. Paavonen K, Puolakkainen P, Jussila L, et al. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 2000;156:1499–504.

    PubMed  CAS  Google Scholar 

  29. Valtola R, Salven P, Heikkila P, et al. VEGFR3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999;154:1381–90.

    PubMed  CAS  Google Scholar 

  30. Kubo H, Fujiwara T, Jussila L, et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000;96:546–53.

    PubMed  CAS  Google Scholar 

  31. Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999;86:2406–12.

    Article  PubMed  CAS  Google Scholar 

  32. Oliver G, Sosa-Pineda B, Geisendorf S, et al. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev 1993;44:3–16.

    Article  PubMed  CAS  Google Scholar 

  33. Wilting J, Papoutsi M, Christ B, et al. The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. Faseb J 2002;16:1271–3.

    PubMed  CAS  Google Scholar 

  34. Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002;225:351–7.

    Article  PubMed  CAS  Google Scholar 

  35. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. Embo J 2002;21:4593–9.

    Article  PubMed  CAS  Google Scholar 

  36. Wang HW, Trotter MW, Lagos D, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004;36:687–93.

    Article  PubMed  CAS  Google Scholar 

  37. Hong YK, Foreman K, Shin JW, et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 2004;36:683–5.

    Article  PubMed  CAS  Google Scholar 

  38. Harvey NL, Srinivasan RS, Dillard ME, et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 2005;37:1072–81.

    Article  PubMed  CAS  Google Scholar 

  39. Jackson DG, Prevo R, Clasper S, et al. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 2001; 22:317–21.

    Article  PubMed  CAS  Google Scholar 

  40. Jackson DG. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 2003;13:1–7.

    Article  PubMed  CAS  Google Scholar 

  41. Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004;4:35–45.

    Article  PubMed  CAS  Google Scholar 

  42. Makinen T, Adams RH, Bailey J, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005;19:397–410.

    Article  PubMed  CAS  Google Scholar 

  43. Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999;144:789–801.

    Article  PubMed  CAS  Google Scholar 

  44. Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. Apmis 2004;112:526–38.

    Article  PubMed  CAS  Google Scholar 

  45. Huang SS, Liu IH, Smith T, et al. CRSBP-1/LYVE-l-null mice exhibit identifiable morphological and functional alterations of lymphatic capillary vessels. FEBS Lett 2006;580: 6259–68.

    Article  PubMed  CAS  Google Scholar 

  46. Gale NW, Prevo R, Fematt JE, et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 2006.

    Google Scholar 

  47. Breiteneder-Geleff S, Soleiman A, Kowalski H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999;154:385–94.

    PubMed  CAS  Google Scholar 

  48. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. Embo J 2003;22:3546–56.

    Article  PubMed  CAS  Google Scholar 

  49. Wetterwald A, Hoffstetter W, Cecchini MG, et al. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 1996;18:125–32.

    Article  PubMed  CAS  Google Scholar 

  50. Martin-Villar E, Megias D, Castel S, et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 2006;119:4541–53.

    Article  PubMed  CAS  Google Scholar 

  51. Wicki A, Lehembre F, Wick N, et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 2006;9:261–72.

    Article  PubMed  CAS  Google Scholar 

  52. Ramirez MI, Millien G, Hinds A, et al. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003;256:61–72.

    Article  PubMed  CAS  Google Scholar 

  53. Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005;166:913–21.

    PubMed  CAS  Google Scholar 

  54. Martin-Villar E, Scholl FG, Gamallo C, et al. Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 2005;113:899–910.

    Article  PubMed  CAS  Google Scholar 

  55. Gunn MD, Tangemann K, Tam C, et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 1998;95:258–63.

    Article  PubMed  CAS  Google Scholar 

  56. Tangemann K, Gunn MD, Giblin P, et al. A high endothelial cell-derived chemokine induces rapid, efficient, and subset-selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate. J Immunol 1998;161:6330–7.

    PubMed  CAS  Google Scholar 

  57. Shields JD, Emmett MS, Dunn DB, et al. Chemokine-mediated migration of melanoma cells towards lymphatics - a mechanism contributing to metastasis. Oncogene 2006.

    Google Scholar 

  58. Wiley HE, Gonzalez EB, Maki W, et al. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001;93:1638–43.

    PubMed  CAS  Google Scholar 

  59. Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol 2006;126:2167–77.

    Article  PubMed  CAS  Google Scholar 

  60. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. Embo J 1996;15:1751.

    PubMed  CAS  Google Scholar 

  61. Yamada Y, Nezu J, Shimane M, et al. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 1997;42:483–8.

    Article  PubMed  CAS  Google Scholar 

  62. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998;95:548–53.

    Article  PubMed  CAS  Google Scholar 

  63. Orlandini M, Marconcini L, Ferruzzi R, et al. Identification of a c-fos-induced gene that is related to the platelet- derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci USA 1996;93:11675–80.

    Article  PubMed  CAS  Google Scholar 

  64. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997;276:1423–5.

    Article  PubMed  CAS  Google Scholar 

  65. Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 2001;20:1223–31.

    Article  PubMed  CAS  Google Scholar 

  66. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004;5:74–80.

    Article  PubMed  CAS  Google Scholar 

  67. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7:186–91.

    Article  PubMed  CAS  Google Scholar 

  68. Baldwin ME, Halford MM, Roufail S, et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 2005;25:2441–9.

    Article  PubMed  CAS  Google Scholar 

  69. Avantaggiato V, Orlandini M, Acampora D, et al. Embryonic expression pattern of the murine figf gene, a growth factor belonging to platelet-derived growth factor/vascular endothelial growth factor family. Mech Dev 1998;73:221–4.

    Article  PubMed  CAS  Google Scholar 

  70. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998;282:946–9.

    Article  PubMed  CAS  Google Scholar 

  71. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000;25:153–9.

    Article  PubMed  CAS  Google Scholar 

  72. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001;98:12677–82.

    Article  PubMed  CAS  Google Scholar 

  73. Szuba A, Skobe M, Karkkainen MJ, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. Faseb J 2002;16: 1985–7.

    PubMed  CAS  Google Scholar 

  74. Hong YK, Lange-Asschenfeldt B, Velasco P, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. Faseb J 2004;18:1111–3.

    PubMed  CAS  Google Scholar 

  75. Joukov V, Kumar V, Sorsa T, et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem 1998;273:6599–602.

    Article  PubMed  CAS  Google Scholar 

  76. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. Embo J 2001;20:4762–73.

    Article  PubMed  CAS  Google Scholar 

  77. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002;196:1497–506.

    Article  PubMed  CAS  Google Scholar 

  78. Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004;104:1048–57.

    Article  PubMed  CAS  Google Scholar 

  79. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005;115:247–57.

    PubMed  CAS  Google Scholar 

  80. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002;129:4797–806.

    PubMed  CAS  Google Scholar 

  81. Karpanen T, Heckman CA, Keskitalo S, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. Faseb J 2006;20:1462–72.

    Article  PubMed  CAS  Google Scholar 

  82. Favier B, Alam A, Barron P, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 2006;108:1243–50.

    Article  PubMed  CAS  Google Scholar 

  83. Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–45.

    Article  PubMed  CAS  Google Scholar 

  84. Chen H, Bagri A, Zupicich JA, et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 2000;25:43–56.

    Article  PubMed  Google Scholar 

  85. Giger RJ, Cloutier JF, Sahay A, et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 2000;25:29–41.

    Article  PubMed  CAS  Google Scholar 

  86. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell 1996;87:1171–80.

    Article  PubMed  CAS  Google Scholar 

  87. Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994;8:1897–909.

    Article  PubMed  CAS  Google Scholar 

  88. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55–60.

    Article  PubMed  CAS  Google Scholar 

  89. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 1996;87:1161–9.

    Article  PubMed  CAS  Google Scholar 

  90. Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005;105: 4642–8.

    Article  PubMed  CAS  Google Scholar 

  91. Morisada T, Oike Y, Yamada Y, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 2005;105:4649–56.

    Article  PubMed  CAS  Google Scholar 

  92. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002;3:411–23.

    Article  PubMed  CAS  Google Scholar 

  93. Kajiya K, Hirakawa S, Ma B, et al. Hepatocyte growth factor promotes lymphatic vessel formation and function. Embo J 2005;24:2885–95.

    Article  PubMed  CAS  Google Scholar 

  94. Cao R, Bjorndahl MA, Gallego MI, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 2006;107:3531–6.

    Article  PubMed  CAS  Google Scholar 

  95. Vlahakis NE, Young BA, Atakilit A, et al. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 2005;280:4544–52.

    Article  PubMed  CAS  Google Scholar 

  96. Huang XZ, Wu JF, Ferrando R, et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2000;20:5208–15.

    Article  PubMed  CAS  Google Scholar 

  97. Bjorndahl M, Cao R, Nissen LJ, et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci USA 2005;102:15593–8.

    Article  PubMed  CAS  Google Scholar 

  98. Chang LK, Garcia-Cardena G, Farnebo F, et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 2004;101:11658–63.

    Article  PubMed  CAS  Google Scholar 

  99. Kubo H, Cao R, Brakenhielm E, et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 2002;99:8868–73.

    Article  PubMed  CAS  Google Scholar 

  100. Shin JW, Min M, Larrieu-Lahargue F, et al. Prox1 promotes lineage-specific expression of FGF receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 2006;17:576–84.

    Article  PubMed  CAS  Google Scholar 

  101. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004;6:333–45.

    Article  PubMed  CAS  Google Scholar 

  102. Auguste P, Javerzat S, Bikfalvi A. Regulation of vascular development by fibroblast growth factors. Cell Tissue Res 2003;314:157–66.

    Article  PubMed  CAS  Google Scholar 

  103. Lee OH, Bae SK, Bae MH, et al. Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br J Cancer 2000;82:385–91.

    Article  PubMed  CAS  Google Scholar 

  104. Shigematsu S, Yamauchi K, Nakajima K, et al. IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 1999;46 Suppl:S59–62.

    Article  PubMed  CAS  Google Scholar 

  105. Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984;223:1296–9.

    Article  PubMed  CAS  Google Scholar 

  106. Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005;201:1089–99.

    Article  PubMed  CAS  Google Scholar 

  107. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7:192–8.

    Article  PubMed  CAS  Google Scholar 

  108. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. Embo J 2001;20:672–82.

    Article  PubMed  CAS  Google Scholar 

  109. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002;94:819–25.

    PubMed  CAS  Google Scholar 

  110. Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007;109:1010–7.

    Article  PubMed  CAS  Google Scholar 

  111. Stacker SA, Achen MG, Jussila L, et al. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002;2:573–83.

    Article  PubMed  CAS  Google Scholar 

  112. Dadras SS, Paul T, Bertoncini J, et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 2003;162: 1951–60.

    PubMed  Google Scholar 

  113. Dadras SS, Lange-Asschenfeldt B, Velasco P, et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005;18:1232–42.

    Article  PubMed  Google Scholar 

  114. Kerjaschki D, Regele HM, Moosberger I, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 2004;15:603–12.

    Article  PubMed  CAS  Google Scholar 

  115. Kajiya K, Detmar M. An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol 2006;126:919–21.

    Article  PubMed  CAS  Google Scholar 

  116. Ebata N, Nodasaka Y, Sawa Y, et al. Desmoplakin as a specific marker of lymphatic vessels. Microvasc Res 2001;61:40–8.

    Article  PubMed  CAS  Google Scholar 

  117. Irjala H, Johansson EL, Grenman R, et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 2001;194: 1033–42.

    Article  PubMed  CAS  Google Scholar 

  118. Young PE, Baumhueter S, Lasky LA. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 1995;85:96–105.

    PubMed  CAS  Google Scholar 

  119. Niemela H, Elima K, Henttinen T, et al. Molecular identification of PAL-E, a widely used endothelial-cell marker. Blood 2005;106:3405–9.

    Article  PubMed  CAS  Google Scholar 

  120. Schlingemann RO, Dingjan GM, Emeis JJ, et al. Monoclonal antibody PAL-E specific for endothelium. Lab Invest 1985;52:71–6.

    PubMed  CAS  Google Scholar 

  121. Barsky SH, Baker A, Siegal GP, et al. Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am J Surg Pathol 1983;7:667–77.

    Article  PubMed  CAS  Google Scholar 

  122. Fiedler U, Christian S, Koidl S, et al. The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol 2006;168:1045–53.

    Article  PubMed  CAS  Google Scholar 

  123. Sauter B, Foedinger D, Sterniczky B, et al. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 1998;46:165–76.

    PubMed  CAS  Google Scholar 

  124. Pennisi D, Gardner J, Chambers D, et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 2000;24:434–7.

    Article  PubMed  CAS  Google Scholar 

  125. Ayadi A, Zheng H, Sobieszczuk P, et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. Embo J 2001;20:5139–52.

    Article  PubMed  CAS  Google Scholar 

  126. Kriederman BM, Myloyde TL, Witte MH, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet 2003;12:1179–85.

    Article  PubMed  CAS  Google Scholar 

  127. Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004;10:974–81.

    Article  PubMed  CAS  Google Scholar 

  128. Sebzda E, Hibbard C, Sweeney S, et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell 2006;11:349–61.

    Article  PubMed  CAS  Google Scholar 

  129. Abtahian F, Guerriero A, Sebzda E, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003;299:247–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cueni, L.N., Detmar, M. (2008). Lymphatic Vascular System and Lymphangiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics