Skip to main content

Targeted Drug Delivery to the Tumor Neovasculature

  • Chapter
Angiogenesis

The angiogenic process that accompanies solid tumor growth provides an excellent opportunity for the development of targeted drug delivery to selectively block the blood supply of a tumor. Several tumor endothelial associated molecules, preferentially expressed during the angiogenic phase, have been put forward as target epitopes for this purpose, and numerous strategies have now been investigated for therapeutic potential. This chapter provides a concise, though not complete, overview on delivery devices, target epitopes and targeting ligands, and pharmacological effector moieties studied for this purpose. As the final aim is to develop targeted drug delivery systems for the patient, the last part of the chapter focuses on issues that (still) need to be addressed to make successful clinical application a realistic aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molema G, Meijer DKF. Drug Targeting: Organ-Specific Strategies. Weinheim: Wiley-VCH, 2001.

    Google Scholar 

  2. Proost JH. Pharmacokinetic/Pharmacodynamic modelling in drug targeting. In: Molema G, Meijer DKF, editors. Drug Targeting - Organ Specific Strategies. Weinheim: Wiley-VCH, 2001: 333–370.

    Google Scholar 

  3. Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004; 4(10):806–813.

    PubMed  CAS  Google Scholar 

  4. Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987; 6(4):559–593.

    PubMed  CAS  Google Scholar 

  5. Sunassee K, Vile R. Tumour angiogenesis: hitting cancer where it hurts. Curr Biol 1997; 7:R282–R285.

    PubMed  CAS  Google Scholar 

  6. Boucher Y, Salehi H, Witwer B, Harsh GR4, Jain RK. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br J Cancer 1997; 75(6):829–836.

    PubMed  CAS  Google Scholar 

  7. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 1996; 93(25):14765–14770.

    PubMed  CAS  Google Scholar 

  8. Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 2002; 8(4):1008–1013.

    PubMed  CAS  Google Scholar 

  9. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Rel 2000; 65(1–2):271–284.

    CAS  Google Scholar 

  10. Metselaar JM, Wauben MH, Wagenaar-Hilbers JP, Boerman OC, Storm G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 2003; 48(7):2059–2066.

    PubMed  CAS  Google Scholar 

  11. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006; 98(5):335–344.

    Article  PubMed  CAS  Google Scholar 

  12. Tabata Y, Kawai T, Murakami Y, Ikada Y. Electric charge influence of dextran derivatives on their tumor accumulation after intravenous injection. Drug Delivery 1997; 4:213–221.

    CAS  Google Scholar 

  13. de Groot FMH, Broxterman HJ, Adams HPHM et al. Design, synthesis and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Molc Cancer Ther 2002; 1:901–911.

    Google Scholar 

  14. Wu W, Luo Y, Sun C et al. Targeting cell-impermeable prodrug activation to tumor microenvironment eradicates multiple drug-resistant neoplasms. Cancer Res 2006; 66(2):970–980.

    PubMed  CAS  Google Scholar 

  15. Schiffelers RM, Metselaar JM, Janssen AP et al. Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia 2005; 7(2):118–127.

    PubMed  CAS  Google Scholar 

  16. Lin EY, Li JF, Gnatovskiy L et al. Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer Res 2006; 66(23):11238–11246.

    PubMed  CAS  Google Scholar 

  17. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4(6):423–436.

    PubMed  CAS  Google Scholar 

  18. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438(7070):932–936.

    PubMed  CAS  Google Scholar 

  19. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2):145–160.

    PubMed  CAS  Google Scholar 

  20. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10):6039–6044.

    PubMed  CAS  Google Scholar 

  21. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19(3):311–330.

    PubMed  CAS  Google Scholar 

  22. Liu Y, Deisseroth A. Tumor vascular targeting therapy with viral vectors. Blood 2006; 107(8):3027–3033.

    PubMed  CAS  Google Scholar 

  23. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9):1137–1146.

    PubMed  CAS  Google Scholar 

  24. Kok RJ, Ásgeirsdóttir SA, Verweij WR. Development of proteinaceous drug targeting constructs using chemical and recombinant DNA approaches. In: Molema G, Meijer DKF, editors. Drug Targeting - Organ specific strategies. Weinheim: Wiley-VCH, 2001: 275–308.

    Google Scholar 

  25. Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Update 2005; 8(6):381–402.

    CAS  Google Scholar 

  26. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9):688–701.

    PubMed  CAS  Google Scholar 

  27. Niederman TM, Ghogawala Z, Carter BS, Tompkins HS, Russell MM, Mulligan RC. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci USA 2002; 99(10):7009–7014.

    PubMed  CAS  Google Scholar 

  28. Schraa AJ, Kok RJ, Botter SM et al. RGD-modified anti-CD3 antibodies redirect cytolytic capacity of cytotoxic T lymphocytes toward alphav-beta3 expressing endothelial cells. Int J Cancer 2004; 112(279):285.

    Google Scholar 

  29. De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 2003; 9(6):789–795.

    PubMed  CAS  Google Scholar 

  30. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998; 102(2):430–437.

    PubMed  CAS  Google Scholar 

  31. St Croix B, Rago C, Velculescu V et al. Genes expressed in human tumor endothelium. Science 2000; 289(5482):1197–1202.

    PubMed  CAS  Google Scholar 

  32. Pai JT, Ruoslahti E. Identification of endothelial genes up-regulated in vivo. Gene 2005; 347(1):21–33.

    PubMed  CAS  Google Scholar 

  33. Valadon P, Garnett JD, Testa JE, Bauerle M, Oh P, Schnitzer JE. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc Natl Acad Sci USA 2006; 103(2):407–412.

    PubMed  CAS  Google Scholar 

  34. Stacy DR, Lu B, Hallahan DE. Radiation-guided drug delivery systems. Expert Rev Anticancer Ther 2004; 4(2): 283–288.

    PubMed  CAS  Google Scholar 

  35. Hagemeier HH, Vollmer E, Goerdt S, Schulze Osthoff K, Sorg C. A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. Int J Cancer 1986; 38(4):481–488.

    PubMed  CAS  Google Scholar 

  36. Schlingemann RO, Rietveld FJ, De Waal RM et al. Leukocyte antigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal microprocesses in the tumor stroma. Lab Invest 1990; 62(6):690–696.

    PubMed  CAS  Google Scholar 

  37. Schlingemann RO, Rietveld FJ, Kwaspen F, van de Kerkhof PC, De Waal RM, Ruiter DJ. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 1991; 138(6):1335–1347.

    PubMed  CAS  Google Scholar 

  38. Rettig WJ, Garin Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 1992; 89(22):10832–10836.

    PubMed  CAS  Google Scholar 

  39. Brown LF, Berse B, Jackman RW et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993; 143(5):1255–1262.

    PubMed  CAS  Google Scholar 

  40. Nguyen M, Strubel NA, Bischoff J. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 1993; 365(6443):267–269.

    PubMed  CAS  Google Scholar 

  41. Hallahan DE, Staba Hogan MJ, Virudachalam S, Kolchinsky A. X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res 1998; 58(22):5216–5220.

    PubMed  CAS  Google Scholar 

  42. Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79(7):1157–1164.

    PubMed  CAS  Google Scholar 

  43. Burrows FJ, Tazzari PL, Amlot P et al. Endoglin is an endothelial cell proliferation marker that is selectively expressed in tumor vasculature. Clin Cancer Res 1995; 1:1623–1634.

    PubMed  CAS  Google Scholar 

  44. Sato TN, Tozawa Y, Deutsch U et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376(6535):70–74.

    PubMed  CAS  Google Scholar 

  45. Epstein AL, Khawli LA, Hornick JL, Taylor CR. Identification of a monoclonal antibody, TV-1, directed against the basement membrane of tumor vessels, and its use to enhance the delivery of macromolecules to tumors after conjugation with interleukin 2. Cancer Res 1995; 55(June 15):2673–2680.

    PubMed  CAS  Google Scholar 

  46. Henke CA, Roongta U, Mickelson DJ, Knutson JR, McCarthy JB. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest 1996; 97(11):2541–2552.

    PubMed  CAS  Google Scholar 

  47. Griffioen AW, Coenen MJH, Damen CA et al. CD44 is involved in tumor angiogenesis: an activation antigen on human endothelial cells. Blood 1997; 90(3):1150–1159.

    PubMed  CAS  Google Scholar 

  48. Forster-Horvath C, Meszaros L, Raso E et al. Expression of CD44v3 protein in human endothelial cells in vitro and in tumoral microvessels in vivo. Microvasc Res 2004; 68(2):110–118.

    PubMed  CAS  Google Scholar 

  49. Liu H, Moy P, Kim S et al. Monoclonal antibodies to the extracellular domain of prostate- specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997; 57(17):3629–3634.

    PubMed  CAS  Google Scholar 

  50. Neri D, Carnemolla B, Nissim A et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 1997; 15(12):1271–1275.

    PubMed  CAS  Google Scholar 

  51. Moser TL, Stack MS, Asplin I et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999; 96:2811–2816.

    PubMed  CAS  Google Scholar 

  52. Koivunen E, Arap W, Valtanen H et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999; 17(8): 768–774.

    PubMed  CAS  Google Scholar 

  53. Clausse N, van den Brule F, Waltregny D, Garnier F, Castronova V. Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 1999; 3:317–325.

    PubMed  CAS  Google Scholar 

  54. Pasqualini R, Koivunen E, Kain R et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60(3):722–727.

    PubMed  CAS  Google Scholar 

  55. Karumanchi SA, Jha V, Ramchandran R et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001; 7(4):811–822.

    PubMed  CAS  Google Scholar 

  56. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002; 79(4):547–552.

    PubMed  CAS  Google Scholar 

  57. Corada M, Zanetta L, Orsenigo F et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 2002; 100(3):905–911.

    PubMed  CAS  Google Scholar 

  58. Schmid MC, Bisoffi M, Wetterwald A et al. Insulin-like growth factor binding protein-3 is overexpressed in endothelial cells of mouse breast tumor vessels. Int J Cancer 2003; 103(5):577–586.

    PubMed  CAS  Google Scholar 

  59. Oh P, Li Y, Yu J et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004; 429(6992):629–635.

    PubMed  CAS  Google Scholar 

  60. Roodink I, Raats J, van der Zwaag B et al. Plexin D1 expression is induced on tumor vasculature and tumor cells: a novel target for diagnosis and therapy? Cancer Res 2005; 65(18):8317–8323.

    PubMed  CAS  Google Scholar 

  61. Zheng PP, van der Weiden M, Kros JM. Differential expression of Hela-type caldesmon in tumour neovascularization: a new marker of angiogenic endothelial cells. J Pathol 2005; 205(3):408–414.

    PubMed  CAS  Google Scholar 

  62. Ruoslahti E, Duza T, Zhang L. Vascular homing peptides with cell-penetrating properties. Curr Pharm Des 2005; 11(28):3655–3660.

    PubMed  CAS  Google Scholar 

  63. Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem 2001; 276(19):16464–16468.

    PubMed  CAS  Google Scholar 

  64. McNamara JO, Andrechek ER, Wang Y et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006; 24(8):1005–1015.

    PubMed  CAS  Google Scholar 

  65. Posey JA, Khazaeli MB, DelGrosso A et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 2001; 16(2):125–132.

    PubMed  CAS  Google Scholar 

  66. Santimaria M, Moscatelli G, Viale GL et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003; 9(2):571–579.

    PubMed  CAS  Google Scholar 

  67. Borjesson PK, Postema EJ, Roos JC et al. Phase I therapy study with (186) Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 2003; 9(10 Pt 2):3961S–3972S.

    PubMed  Google Scholar 

  68. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 2004; 22(13):2522–2531.

    PubMed  CAS  Google Scholar 

  69. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279(January 16):377–380.

    PubMed  CAS  Google Scholar 

  70. Kim JW, Lee HS. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int J Mol Med 2004; 14(4):529–535.

    PubMed  CAS  Google Scholar 

  71. Hu P, Yan J, Sharifi J, Bai T, Khawli LA, Epstein AL. Comparison of three different targeted tissue factor fusion proteins for inducing tumor vessel thrombosis. Cancer Res 2003; 63(16):5046–5053.

    PubMed  CAS  Google Scholar 

  72. Schiffelers RM, Koning GA, ten Hagen TL et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Cont Rel 2003; 91:115–122.

    CAS  Google Scholar 

  73. Schiffelers RM, Ansari A, Xu J et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004; 32(19):e149.

    PubMed  Google Scholar 

  74. Curnis F, Gasparri A, Sacchi A, Longhi R, Corti A. Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 2004; 64(2):565–571.

    PubMed  CAS  Google Scholar 

  75. Temming K, Lacombe M, Schaapveld RQJ et al. Rational design of RGD-albumin conjugates for targeted delivery of the VEGF-R kinase inhibitor PTK787 to angiogenic endothelium. Chem Med Chem 2007; 2(4):433–435.

    PubMed  CAS  Google Scholar 

  76. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 2004; 15(1):41–49.

    PubMed  Google Scholar 

  77. Decristoforo C, Faintuch-Linkowski B, Rey A et al. [(99 m) Tc]HYNIC-RGD for imaging integrin alpha(v) beta(3) expression. Nucl Med Biol 2006; 33(8):945–952.

    PubMed  CAS  Google Scholar 

  78. Ellerby HM, Arap W, Ellerby LM et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999; 5(9):1032–1038.

    PubMed  CAS  Google Scholar 

  79. Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 2000; 18(11):1185–1190.

    PubMed  CAS  Google Scholar 

  80. Pastorino F, Brignole C, Marimpietri D et al. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 2003; 63(21):7400–7409.

    PubMed  CAS  Google Scholar 

  81. Curnis F, Gasparri A, Sacchi A, Cattaneo A, Magni F, Corti A. Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res 2005; 65(7):2906–2913.

    PubMed  CAS  Google Scholar 

  82. Yokoyama Y, Ramakrishnan S. Addition of an aminopeptidase N-binding sequence to human endostatin improves inhibition of ovarian carcinoma growth. Cancer 2005; 104(2):321–331.

    PubMed  CAS  Google Scholar 

  83. Binetruy-Tournaire R, Demangel C, Malavaud B et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 2000; 19(7): 1525–1533.

    PubMed  CAS  Google Scholar 

  84. Renno RZ, Terada Y, Haddadin MJ, Michaud NA, Gragoudas ES, Miller JW. Selective photodynamic therapy by targeted verteporfin delivery to experimental choroidal neovascularization mediated by a homing peptide to vascular endothelial growth factor receptor-2. Arch Ophthalmol 2004; 122(7):1002–1011.

    PubMed  CAS  Google Scholar 

  85. Oku N, Asai T, Watanabe K et al. Anti-neovascular therapy using novel peptides homing to angiogenic vessels. Oncogene 2002; 21(17):2662–2669.

    PubMed  CAS  Google Scholar 

  86. Asai T, Shimizu K, Kondo M et al. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett 2002; 520(1–3):167–170.

    PubMed  CAS  Google Scholar 

  87. Arap W, Haedicke W, Bernasconi M et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 2002; 99(3):1527–1531.

    PubMed  CAS  Google Scholar 

  88. Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB. NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 1999; 59(12):2869–2874.

    PubMed  CAS  Google Scholar 

  89. Martens CL, Cwirla SE, Lee RY et al. Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 1995; 270(36):21129–21136.

    PubMed  CAS  Google Scholar 

  90. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L. Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 2005; 7(10):904–911.

    PubMed  CAS  Google Scholar 

  91. Kondo M, Asai T, Katanasaka Y et al. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 2004; 108(2):301–306.

    PubMed  CAS  Google Scholar 

  92. Carnemolla B, Borsi L, Balza E et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 2002; 99(5):1659–1665.

    PubMed  Google Scholar 

  93. Dickerson EB, Akhtar N, Steinberg H et al. Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Mol Cancer Res 2004; 2(12):663–673.

    PubMed  CAS  Google Scholar 

  94. Gafner V, Trachsel E, Neri D. An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 2006; 119(9):2205–2212.

    PubMed  CAS  Google Scholar 

  95. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev /Focus/Therapeutic Proteins 2006; 9:S48–S57.

    Google Scholar 

  96. Kuenen BC, Giaccone G, Ruijter R et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res 2005; 11(17):6240–6246.

    PubMed  CAS  Google Scholar 

  97. Fury MG, Zahalsky A, Wong R et al. A Phase II study of SU5416 in patients with advanced or recurrent head and neck cancers. Invest New Drugs 2007; 25(2):165–172.

    PubMed  CAS  Google Scholar 

  98. Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 2006; 11(7):753–764.

    PubMed  CAS  Google Scholar 

  99. Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 2001; 7(9):1041–1047.

    PubMed  CAS  Google Scholar 

  100. Guba M, von Breitenbuch P, Steinbauer M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8(2):128–135.

    PubMed  CAS  Google Scholar 

  101. Sengupta S, Sellers LA, Li RC et al. Targeting of mitogen-activated protein kinases and phosphatidylinositol 3 kinase inhibits hepatocyte growth factor/scatter factor-induced angiogenesis. Circulation 2003; 107(23):2955–2961.

    PubMed  Google Scholar 

  102. Yazawa K, Tsuno NH, Kitayama J et al. Selective inhibition of cyclooxygenase (COX)-2 inhibits endothelial cell proliferation by induction of cell cycle arrest. Int J Cancer 2005; 113(4):541–548.

    PubMed  CAS  Google Scholar 

  103. Monnier Y, Zaric J, Ruegg C. Inhibition of angiogenesis by non-steroidal anti-inflammatory drugs: from the bench to the bedside and back. Curr Drug Targets Inflamm Allergy 2005; 4(1):31–38.

    PubMed  CAS  Google Scholar 

  104. Qian DZ, Kato Y, Shabbeer S et al. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res 2006; 12(2):634–642.

    PubMed  CAS  Google Scholar 

  105. Millward MJ, House C, Bowtell D et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer 2006; 95(7):829–834.

    PubMed  CAS  Google Scholar 

  106. Temming K, Lacombe M, van der Hoeven P et al. Delivery of the p38 MAPKinase inhibitor SB202190 to angiogenic endothelial cells: development of novel RGD-equipped and pegylated drug-albumin conjugates using platinum(II)-based drug linker technology. Bioconjug Chem 2006; 17:1246–1255.

    PubMed  CAS  Google Scholar 

  107. Hood JD, Bednarski M, Frausto R et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296(5577):2404–2407.

    PubMed  CAS  Google Scholar 

  108. Ogawara KI, Kuldo JM, Oosterhuis K et al. Functional inhibition of NF-êB signal transduction in αvβ3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IêB gene. Arthritis Res Ther 2006; 8(1):R32.

    PubMed  Google Scholar 

  109. Kuo CJ, Farnebo F, Yu EY et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98(8):4605–4610.

    PubMed  CAS  Google Scholar 

  110. Burrows FJ, Thorpe PE. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 1993; 90:8996–9000.

    PubMed  CAS  Google Scholar 

  111. Olson TA, Mohanraj D, Roy S, Ramakrishnan S. Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer 1997; 73(6):865–870.

    PubMed  CAS  Google Scholar 

  112. Arora N, Masood R, Zheng T, Cai J, Smith DL, Gill PS. Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res 1999; 59(1):183–188.

    PubMed  CAS  Google Scholar 

  113. Li L, Wartchow CA, Danthi SN et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 2004; 58(4):1215–1227.

    PubMed  CAS  Google Scholar 

  114. Di Matteo P, Curnis F, Longhi R et al. Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Mol Immunol 2006; 43(10):1509–1518.

    PubMed  CAS  Google Scholar 

  115. Ou-Yang F, Lan KL, Chen CT et al. Endostatin-cytosine deaminase fusion protein suppresses tumor growth by targeting neovascular endothelial cells. Cancer Res 2006; 66(1):378–384.

    PubMed  CAS  Google Scholar 

  116. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 1997; 275(24 January):547–550.

    PubMed  CAS  Google Scholar 

  117. Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE. Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 1998; 58:4646–4653.

    PubMed  CAS  Google Scholar 

  118. Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 2001; 61(2):711–716.

    PubMed  CAS  Google Scholar 

  119. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284(5415):808–812.

    PubMed  CAS  Google Scholar 

  120. Ozawa CR, Banfi A, Glazer NL et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004; 113(4):516–527.

    PubMed  CAS  Google Scholar 

  121. Tsujie M, Uneda S, Tsai H, Seon BK. Effective anti-angiogenic therapy of established tumors in mice by naked anti-human endoglin (CD105) antibody: differences in growth rate and therapeutic response between tumors growing at different sites. Int J Oncol 2006; 29(5):1087–1094.

    PubMed  CAS  Google Scholar 

  122. Asgeirsdottir SA, Werner N, Harms G, van den Berg A, Molema G. Analysis of in vivo endothelial cell activation applying RT-PCR following endothelial cell isolation by laser dissection microscopy. Ann NY Acad Sci 2002; 973:586–589.

    PubMed  CAS  Google Scholar 

  123. Asgeirsdottir SA, Kamps JAAM, Bakker HI et al. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Molc Pharmacol 2007; 72:121–131.

    CAS  Google Scholar 

  124. Ruan W, Sassoon A, An F, Simko JP, Liu B. Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 2006; 5(12):2364–2373.

    PubMed  CAS  Google Scholar 

  125. Horsman MR, Siemann DW. Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 2006; 66(24):11520–11539.

    PubMed  CAS  Google Scholar 

  126. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64(11):3731–3736.

    PubMed  CAS  Google Scholar 

  127. Yao VJ, Ozawa MG, Varner AS et al. Antiangiogenic therapy decreases integrin expression in normalized tumor blood vessels. Cancer Res 2006; 66(5):2639–2649.

    PubMed  CAS  Google Scholar 

  128. Leenders WP, Kusters B, Verrijp K et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 2004; 10(18 Pt 1):6222–6230.

    PubMed  CAS  Google Scholar 

  129. Shaked Y, Ciarrocchi A, Franco M et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313(5794):1785–1787.

    PubMed  CAS  Google Scholar 

  130. Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 2002; 110(4):475–482.

    PubMed  CAS  Google Scholar 

  131. Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A. Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin Cancer Res 2006; 12(1):175–182.

    PubMed  CAS  Google Scholar 

  132. Sengupta S, Eavarone D, Capila I et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005; 436(7050):568–572.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Molema, G. (2008). Targeted Drug Delivery to the Tumor Neovasculature. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics