Skip to main content

Delta-like Ligand 4/Notch Pathway in Tumor Angiogenesis

  • Chapter
Book cover Angiogenesis

The process of angiogenesis, be it physiological or pathological, requires the coordinated interplay of a variety of vascular growth factor systems. Many preclinical models, and more recently several clinical trials, have shown that vascular endothelial growth factor (VEGF) is an essential mediator of developmental and pathological angiogenesis. Recent evidence suggests that another pathway—the Delta/ Notch pathway, and the Delta-like ligand 4 (Dll4) in particular—also plays a specific and critical role in angiogenesis, acting in part to restrain VEGF-mediated angiogenesis. Perturbation of this Dll4-mediated restraint can result in excessive non-productive vessel growth. For example, during embryogenesis, genetic deletion of even one allele of Dll4 in mice results in profound vascular defects and significant embryonic lethality at approx E10.5. The vascular defects include abnormal vascular remodeling in the yolk sac and reduced vascular invasion of the placental labyrinth, poor formation of the major arteries in the embryo, and excessive sprouting/branching in certain vessel beds. In genetic backgrounds that permit survival of Dll4 heterozygous mice, other vascular defects are found, including abnormal maturation of the vascular bed in the developing post natal retina. Dll4 also plays a fundamental role in pathological angiogenesis, as blockers of the Dll4 / Notch pathway result in decreased tumor growth, even for tumors resistant to anti-VEGF therapies. This reduced tumor growth is associated with markedly increased tumor vascularity, enhanced angiogenic sprouting, and more vessel branching. However, the increased vascularity is disorg anized and non-productive, as evidenced by poor perfusion and increased tumor hypoxia. The current model is that VEGF induces Dll4 as a negative feedback regulator of angiogenesis, thus helping to coordinate VEGF-induced sprouting and promoting the functional specialization of the endothelial cells (ECs) in a network. Although Dll4 is clearly induced by VEGF and helps regulate VEGF-mediated vascular growth, it appears to also have functions that are independent of VEGF, as blockade of both VEGF and Dll4 can show more potent anti-tumor effects than blockade of either pathway alone. Thus, blockade of Dll4 in tumors presents a novel therapeutic approach, even for tumors resistant to anti-VEGF therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol 3, 65–71.

    PubMed  CAS  Google Scholar 

  2. Ferrara, N. (2004). Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9 Suppl 1, 2–10.

    Article  PubMed  CAS  Google Scholar 

  3. Rudge, J. S., Thurston, G., Davis, S., Papadopoulos, N., Gale, N., Wiegand, S. J., and Yancopoulos, G. D. (2005). VEGF trap as a novel antiangiogenic treatment currently in clinical trials for cancer and eye diseases, and VelociGene- based discovery of the next generation of angiogenesis targets. Cold Spring Harb Symp Quant Biol 70, 411–418.

    Article  PubMed  CAS  Google Scholar 

  4. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  5. Laskin, J. J., and Sandler, A. B. (2005). First-line treatment for advanced non-small-cell lung cancer. Oncology (Williston Park) 19, 1671–1676; discussion 1678–1680.

    Google Scholar 

  6. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  7. Kong, H. L., Hecht, D., Song, W., Kovesdi, I., Hackett, N. R., Yayon, A., and Crystal, R. G. (1998). Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum Gene Ther 9, 823–833.

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442.

    Article  PubMed  CAS  Google Scholar 

  10. Beebe, J. S., Jani, J. P., Knauth, E., Goodwin, P., Higdon, C., Rossi, A. M., Emerson, E., Finkelstein, M., Floyd, E., Harriman, S., et al. (2003). Pharmacological characterization of CP-547, 632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. Cancer Res 63, 7301–7309.

    PubMed  CAS  Google Scholar 

  11. Hicklin, D. J., and Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23, 1011–1027.

    Article  PubMed  CAS  Google Scholar 

  12. Holash, J., Davis, S., Papadopoulos, N., Croll, S. D., Ho, L., Russell, M., Boland, P., Leidich, R., Hylton, D., Burova, E., et al. (2002). VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99, 11393–11398.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, I. K., Husain, D., Michaud, N., Connolly, E., Lane, A. M., Durrani, K., Hafezi-Moghadam, A., Gragoudas, E. S., O’Neill, C. A., Beyer, J. C., and Miller, J. W. (2006). Effect of intravitreal injection of ranibizumab in combination with verteporfin PDT on normal primate retina and choroid. Invest Ophthalmol Vis Sci 47, 357–363.

    Article  PubMed  Google Scholar 

  14. Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., Chisholm, V., Hillan, K. J., and Schwall, R. H. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4, 336–340.

    Article  PubMed  CAS  Google Scholar 

  15. Fraser, H. M., Wilson, H., Morris, K. D., Swanston, I., and Wiegand, S. J. (2005). Vascular endothelial growth factor Trap suppresses ovarian function at all stages of the luteal phase in the macaque. J Clin Endocrinol Metab 90, 5811–5818.

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932–936.

    Article  PubMed  CAS  Google Scholar 

  17. Jain, R. K. (2005a). Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 19, 7–16.

    Google Scholar 

  18. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.

    Article  PubMed  CAS  Google Scholar 

  19. Gridley, T. (2001). Notch signaling during vascular development. Proc Natl Acad Sci U S A 98, 5377–5378.

    Article  PubMed  CAS  Google Scholar 

  20. Shawber, C. J., and Kitajewski, J. (2004). Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 26, 225–234.

    Article  PubMed  CAS  Google Scholar 

  21. Lawson, N. D., Scheer, N., Pham, V. N., Kim, C. H., Chitnis, A. B., Campos-Ortega, J. A., and Weinstein, B. M. (2001). Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683.

    PubMed  CAS  Google Scholar 

  22. Grabher, C., von Boehmer, H., and Look, A. T. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6, 347–359.

    Article  PubMed  CAS  Google Scholar 

  23. Miele, L., Golde, T., and Osborne, B. (2006). Notch signaling in cancer. Curr Mol Med 6, 905–918.

    Article  PubMed  CAS  Google Scholar 

  24. Radtke, F., Clevers, H., and Riccio, O. (2006). From gut homeostasis to cancer. Curr Mol Med 6, 275–289.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson, A., and Radtke, F. (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580, 2860–2868.

    Article  PubMed  CAS  Google Scholar 

  26. Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.

    Article  PubMed  CAS  Google Scholar 

  27. Iso, T., Hamamori, Y., and Kedes, L. (2003). Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 23, 543–553.

    Article  PubMed  CAS  Google Scholar 

  28. Kopan, R., Schroeter, E. H., Weintraub, H., and Nye, J. S. (1996). Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci U S A 93, 1683–1688.

    Article  PubMed  CAS  Google Scholar 

  29. Swiatek, P. J., Lindsell, C. E., del Amo, F. F., Weinmaster, G., and Gridley, T. (1994). Notch1 is essential for postimplantation development in mice. Genes Dev 8, 707–719.

    Article  PubMed  CAS  Google Scholar 

  30. Krebs, L. T., Xue, Y., Norton, C. R., Shutter, J. R., Maguire, M., Sundberg, J. P., Gallahan, D., Closson, V., Kitajewski, J., Callahan, R., et al. (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14, 1343–1352.

    PubMed  CAS  Google Scholar 

  31. Domenga, V., Fardoux, P., Lacombe, P., Monet, M., Maciazek, J., Krebs, L. T., Klonjkowski, B., Berrou, E., Mericskay, M., Li, Z., et al. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18, 2730–2735.

    Article  PubMed  CAS  Google Scholar 

  32. Hrabe de Angelis, M., McIntyre, J., 2nd, and Gossler, A. (1997). Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721.

    Article  Google Scholar 

  33. Przemeck, G. K., Heinzmann, U., Beckers, J., and Hrabe de Angelis, M. (2003). Node and midline defects are associated with left-right development in Delta1 mutant embryos. Development 130, 3–13.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang, R., Lan, Y., Chapman, H. D., Shawber, C., Norton, C. R., Serreze, D. V., Weinmaster, G., and Gridley, T. (1998). Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12, 1046–1057.

    Article  PubMed  CAS  Google Scholar 

  35. Rao, P. K., Dorsch, M., Chickering, T., Zheng, G., Jiang, C., Goodearl, A., Kadesch, T., and McCarthy, S. (2000). Isolation and characterization of the notch ligand delta4. Exp Cell Res 260, 379–386.

    Article  PubMed  CAS  Google Scholar 

  36. Shutter, J. R., Scully, S., Fan, W., Richards, W. G., Kitajewski, J., Deblandre, G. A., Kintner, C. R., and Stark, K. L. (2000). Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14, 1313–1318.

    PubMed  CAS  Google Scholar 

  37. Mailhos, C., Modlich, U., Lewis, J., Harris, A., Bicknell, R., and Ish-Horowicz, D. (2001). Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69, 135–144.

    Article  PubMed  CAS  Google Scholar 

  38. Yoneya, T., Tahara, T., Nagao, K., Yamada, Y., Yamamoto, T., Osawa, M., Miyatani, S., and Nishikawa, M. (2001). Molecular cloning of delta-4, a new mouse and human Notch ligand. J Biochem (Tokyo) 129, 27–34.

    CAS  Google Scholar 

  39. Gale, N. W., Dominguez, M. G., Noguera, I., Pan, L., Hughes, V., Valenzuela, D. M., Murphy, A. J., Adams, N. C., Lin, H. C., Holash, J., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101, 15949–15954.

    Article  PubMed  CAS  Google Scholar 

  40. Duarte, A., Hirashima, M., Benedito, R., Trindade, A., Diniz, P., Bekman, E., Costa, L., Henrique, D., and Rossant, J. (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18, 2474–2478.

    Article  PubMed  CAS  Google Scholar 

  41. Krebs, L. T., Shutter, J. R., Tanigaki, K., Honjo, T., Stark, K. L., and Gridley, T. (2004). Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18, 2469–2473.

    Article  PubMed  CAS  Google Scholar 

  42. Poueymirou, W. T., Auerbach, W., Frendewey, D., Hickey, J. F., Escaravage, J. M., Esau, L., Dore, A. T., Stevens, S., Adams, N. C., Dominguez, M. G., et al. (2007). F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25, 91–99.

    Article  PubMed  CAS  Google Scholar 

  43. Leslie, J. D., Ariza-McNaughton, L., Bermange, A. L., McAdow, R., Johnson, S. L., and Lewis, J. (2007). Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development.

    Google Scholar 

  44. Siekmann, A. F., and Lawson, N. D. (2007). Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature.

    Google Scholar 

  45. Noguera-Troise, I., Daly, C., Papadopoulos, N. J., Coetzee, S., Boland, P., Gale, N. W., Lin, H. C., Yancopoulos, G. D., and Thurston, G. (2006). Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  46. Patel, N. S., Li, J. L., Generali, D., Poulsom, R., Cranston, D. W., and Harris, A. L. (2005). Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65, 8690–8697.

    Article  PubMed  CAS  Google Scholar 

  47. Patel, N. S., Dobbie, M. S., Rochester, M., Steers, G., Poulsom, R., Le Monnier, K., Cranston, D. W., Li, J. L., and Harris, A. L. (2006). Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 12, 4836–4844.

    Article  PubMed  CAS  Google Scholar 

  48. Hainaud, P., Contreres, J. O., Villemain, A., Liu, L. X., Plouet, J., Tobelem, G., and Dupuy, E. (2006). The Role of the Vascular Endothelial Growth Factor-Delta-like 4 Ligand/Notch4-Ephrin B2 Cascade in Tumor Vessel Remodeling and Endothelial Cell Functions. Cancer Res 66, 8501–8510.

    Article  PubMed  CAS  Google Scholar 

  49. Ridgway, J., Zhang, G., Wu, Y., Stawicki, S., Liang, W. C., Chanthery, Y., Kowalski, J., Watts, R. J., Callahan, C., Kasman, I., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  50. Claxton, S., and Fruttiger, M. (2004). Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5, 123–127.

    Article  PubMed  CAS  Google Scholar 

  51. Hellstrom, M., Phng, L. K., Hofmann, J. J., Wallgard, E., Coultas, L., Lindblom, P., Alva, J., Nilsson, A. K., Karlsson, L., Gaiano, N., et al. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature.

    Google Scholar 

  52. Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A., and Eichmann, A. (2007). The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. PNAS in press.

    Google Scholar 

  53. Lobov, I. B., Renard, R. A., Papadopoulos, N. J., Gale, N. W., Thurston, G., Yancopoulos, G. D., and Wiegand, S. J. (2007). Delta-like ligand 4 (dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS in press.

    Google Scholar 

  54. Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245.

    Article  PubMed  CAS  Google Scholar 

  55. Lu, X., Le Noble, F., Yuan, L., Jiang, Q., De Lafarge, B., Sugiyama, D., Breant, C., Claes, F., De Smet, F., Thomas, J. L., et al. (2004). The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, H. U., Chen, Z. F., and Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753.

    Article  PubMed  CAS  Google Scholar 

  57. Baluk, P., Hashizume, H., and McDonald, D. M. (2005). Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15, 102–111.

    Article  PubMed  CAS  Google Scholar 

  58. McDonald, D. M., and Foss, A. J. (2000). Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev 19, 109–120.

    Article  PubMed  CAS  Google Scholar 

  59. Jain, R. K. (2005b). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thurston, G. et al. (2008). Delta-like Ligand 4/Notch Pathway in Tumor Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics