Skip to main content
Book cover

Angiogenesis pp 181–191Cite as

Regulation of Angiogenesis by von Hippel Lindau Protein and HIF2

  • Chapter
  • 2806 Accesses

von Hippel-Lindau (VHL) Syndrome is a rare, autosomal dominant, hereditary neoplastic disorder characterized by the development of hemangioblastomas, retinal angiomas and solid tumors in several organs. VHL-associated renal tumors are highly vascular, malignant and very often fatal. Affected individuals inherit an altered copy of the VHL tumor suppressor gene, and the wild type copy is later inactivated in somatic cells. VHL loss of function also occurs in the majority of sporadic cases of renal cell carcinoma. Thus, understanding the molecular basis of VHL syndrome has proven to be relevant to both patient populations. The VHL gene encodes the substrate recognition component (pVHL) of a ubiquitin ligase complex that targets hypoxia inducible factors (HIFs) for proteosome- mediated degradation in normoxic conditions. HIFs are ubiquitous transcriptional regulators that provide an essential oxygen sensing function. Failure to degrade HIFs, such as in hypoxia or in disease, results in the increased expression of a large collection of genes that regulate cellular energy metabolism, migration, proliferation and angiogenesis. In particular, because of its historic relevance to the pathogenesis of acute, chronic and inherited kidney diseases, the study of angiogenic regulation by the pVHL/HIF axis has contributed to fundamentally important advances in basic biology and medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linehan WM, Vasselli J, Srinivasan R et al. Genetic basis of cancer of the kidney: disease-specific approaches to therapy. Clin Cancer Res 2004; 10(18 Pt 2):6282S–6289S.

    PubMed  CAS  Google Scholar 

  2. Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2002; 2(9):673–682.

    PubMed  CAS  Google Scholar 

  3. Jemal A, Clegg LX, Ward E et al. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer 2004; 101(1):3–27.

    PubMed  Google Scholar 

  4. Iliopoulos O, Kibel A, Gray S et al. Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1995; 1(8):822–826.

    PubMed  CAS  Google Scholar 

  5. Wizigmann-Voos S, Breier G, Risau W et al. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res 1995; 55(6):1358–1364.

    PubMed  CAS  Google Scholar 

  6. Siemeister G, Weindel K, Mohrs K et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 1996; 56(10):2299–2301.

    PubMed  CAS  Google Scholar 

  7. Gnarra JR, Zhou S, Merrill MJ et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 1996; 93(20):10589–10594.

    PubMed  CAS  Google Scholar 

  8. Richards FM. Molecular pathology of von HippelLindau disease and the VHL tumour suppressor gene. Expert Rev Mol Med 2001; 2001:1–27.

    PubMed  Google Scholar 

  9. Woodward ER, Buchberger A, Clifford SC et al. Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 2000; 65(3):253–265.

    PubMed  CAS  Google Scholar 

  10. Gao J, Naglich JG, Laidlaw J et al. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene. Cancer Res 1995; 55(4):743–747.

    PubMed  CAS  Google Scholar 

  11. Adryan B, Decker HJ, Papas TS et al. Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 2000; 19(24):2803–2811.

    PubMed  CAS  Google Scholar 

  12. Aso T, Yamazaki K, Aigaki T et al. Drosophila von Hippel-Lindau tumor suppressor complex possesses E3 ubiquitin ligase activity. Biochem Biophys Res Commun 2000; 276(1):355–361.

    PubMed  CAS  Google Scholar 

  13. Kuzmin I, Duh FM, Latif F et al. Identification of the promoter of the human von Hippel-Lindau disease tumor suppressor gene. Oncogene 1995; 10(11):2185–2194.

    PubMed  CAS  Google Scholar 

  14. Stebbins CE, Kaelin WG, Jr., Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284(5413):455–461.

    PubMed  CAS  Google Scholar 

  15. Duan DR, Pause A, Burgess WH et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269(5229):1402–1406.

    PubMed  CAS  Google Scholar 

  16. Kibel A, Iliopoulos O, DeCaprio JA et al. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 1995; 269(5229):1444–1446.

    PubMed  CAS  Google Scholar 

  17. Kishida T, Stackhouse TM, Chen F et al. Cellular proteins that bind the von Hippel-Lindau disease gene product: mapping of binding domains and the effect of missense mutations. Cancer Res 1995; 55(20):4544–4548.

    PubMed  CAS  Google Scholar 

  18. Ohh M, Yauch RL, Lonergan KM et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998; 1(7):959–968.

    PubMed  CAS  Google Scholar 

  19. Lonergan KM, Iliopoulos O, Ohh M et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 1998; 18(2):732–741.

    PubMed  CAS  Google Scholar 

  20. Pause A, Lee S, Worrell RA et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 1997; 94(6):2156–2161.

    PubMed  CAS  Google Scholar 

  21. Starr R, Willson TA, Viney EM et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387(6636):917–921.

    PubMed  CAS  Google Scholar 

  22. Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387(6636):921–924.

    PubMed  CAS  Google Scholar 

  23. Naka T, Narazaki M, Hirata M et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387(6636):924–929.

    PubMed  CAS  Google Scholar 

  24. Hilton DJ, Richardson RT, Alexander WS et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 1998; 95(1):114–119.

    PubMed  CAS  Google Scholar 

  25. Kamura T, Sato S, Haque D et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12(24):3872–3881.

    PubMed  CAS  Google Scholar 

  26. Zhang JG, Farley A, Nicholson SE et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96(5):2071–2076.

    PubMed  CAS  Google Scholar 

  27. Aso T, Lane WS, Conaway JW et al. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 1995; 269(5229):1439–1443.

    PubMed  CAS  Google Scholar 

  28. Kipreos ET, Lander LE, Wing JP et al. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 1996; 85(6):829–839.

    PubMed  CAS  Google Scholar 

  29. Lisztwan J, Imbert G, Wirbelauer C et al. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13(14):1822–1833.

    PubMed  CAS  Google Scholar 

  30. Iwai K, Yamanaka K, Kamura T et al. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 1999; 96(22):12436–12441.

    PubMed  CAS  Google Scholar 

  31. Tyers M, Rottapel R. VHL: a very hip ligase. Proc Natl Acad Sci USA 1999; 96(22):12230–12232.

    PubMed  CAS  Google Scholar 

  32. Kamura T, Sato S, Iwai K et al. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 2000; 97(19):10430–10435.

    PubMed  CAS  Google Scholar 

  33. DeSalle LM, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett 2001; 490(3):179–189.

    PubMed  CAS  Google Scholar 

  34. Cockman ME, Masson N, Mole DR et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000; 275(33):25733–25741.

    PubMed  CAS  Google Scholar 

  35. Ohh M, Park CW, Ivan M et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2(7):423–427.

    PubMed  CAS  Google Scholar 

  36. Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 2006; 291(2):F271–F281.

    PubMed  CAS  Google Scholar 

  37. Haase VH. The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int 2006; 69(8):1302–1307.

    PubMed  CAS  Google Scholar 

  38. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 2004; 5(5):343–354.

    PubMed  CAS  Google Scholar 

  39. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005; 2005(306):re12.

    Google Scholar 

  40. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11(1):72–82.

    PubMed  CAS  Google Scholar 

  41. Flamme I, Frohlich T, von RM et al. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 1997; 63(1):51–60.

    PubMed  CAS  Google Scholar 

  42. Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 2006; 103(39):14531–14536.

    PubMed  CAS  Google Scholar 

  43. Epstein AC, Gleadle JM, McNeill LA et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107(1): 43–54.

    PubMed  CAS  Google Scholar 

  44. Appelhoff RJ, Tian YM, Raval RR et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 2004; 279(37):38458–38465.

    PubMed  CAS  Google Scholar 

  45. Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292(5516):468–472.

    PubMed  CAS  Google Scholar 

  46. Ivan M, Kondo K, Yang H et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292(5516):464–468.

    PubMed  CAS  Google Scholar 

  47. Knowles HJ, Raval RR, Harris AL et al. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 2003; 63(8):1764–1768.

    PubMed  CAS  Google Scholar 

  48. Martin F, Linden T, Katschinski DM et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 2005; 105(12):4613–4619.

    PubMed  CAS  Google Scholar 

  49. Hirsila M, Koivunen P, Xu L et al. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 2005; 19(10):1308–1310.

    PubMed  CAS  Google Scholar 

  50. Gerald D, Berra E, Frapart YM et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004; 118(6):781–794.

    PubMed  CAS  Google Scholar 

  51. Metzen E, Zhou J, Jelkmann W et al. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 2003; 14(8):3470–3481.

    PubMed  CAS  Google Scholar 

  52. Dalgard CL, Lu H, Mohyeldin A et al. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem J 2004; 380(Pt 2):419–424.

    PubMed  CAS  Google Scholar 

  53. Selak MA, Armour SM, MacKenzie ED et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7(1):77–85.

    PubMed  CAS  Google Scholar 

  54. Brunelle JK, Bell EL, Quesada NM et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005; 1(6):409–414.

    PubMed  CAS  Google Scholar 

  55. Guzy RD, Hoyos B, Robin E et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005; 1(6):401–408.

    PubMed  CAS  Google Scholar 

  56. Mansfield KD, Guzy RD, Pan Y et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 2005; 1(6):393–399.

    PubMed  CAS  Google Scholar 

  57. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda ) 2004; 19:176–182.

    CAS  Google Scholar 

  58. Stolze IP, Tian YM, Appelhoff RJ et al. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J Biol Chem 2004; 279(41):42719–42725.

    PubMed  CAS  Google Scholar 

  59. Sandau KB, Zhou J, Kietzmann T et al. Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 2001; 276(43):39805–39811.

    PubMed  CAS  Google Scholar 

  60. Hellwig-Burgel T, Rutkowski K, Metzen E et al. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999; 94(5):1561–1567.

    PubMed  CAS  Google Scholar 

  61. Stiehl DP, Jelkmann W, Wenger RH et al. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002; 512(1–3):157–162.

    PubMed  CAS  Google Scholar 

  62. Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000; 275(35): 26765–26771.

    PubMed  CAS  Google Scholar 

  63. Feldser D, Agani F, Iyer NV et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 1999; 59(16):3915–3918.

    PubMed  CAS  Google Scholar 

  64. Jiang BH, Jiang G, Zheng JZ et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12(7):363–369.

    PubMed  CAS  Google Scholar 

  65. Treins C, Giorgetti-Peraldi S, Murdaca J et al. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277(31):27975–27981.

    PubMed  CAS  Google Scholar 

  66. Zelzer E, Levy Y, Kahana C et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 1998; 17(17):5085–5094.

    PubMed  CAS  Google Scholar 

  67. Kaelin WG. Proline hydroxylation and gene expression. Annu Rev Biochem 2005; 74:115–128.

    PubMed  CAS  Google Scholar 

  68. Fukuda R, Hirota K, Fan F et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277(41):38205–38211.

    PubMed  CAS  Google Scholar 

  69. Laughner E, Taghavi P, Chiles K et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21(12):3995–4004.

    PubMed  CAS  Google Scholar 

  70. Zhong H, Chiles K, Feldser D et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60(6):1541–1545.

    PubMed  CAS  Google Scholar 

  71. Wiesener MS, Jurgensen JS, Rosenberger C et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 2003; 17(2):271–273.

    PubMed  CAS  Google Scholar 

  72. Higgins DF, Biju MP, Akai Y et al. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol 2004; 287(6):F1223–F1232.

    PubMed  CAS  Google Scholar 

  73. Rosenberger C, Mandriota S, Jurgensen JS et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13(7):1721–1732.

    PubMed  CAS  Google Scholar 

  74. Ryan HE, Poloni M, McNulty W et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000; 60(15):4010–4015.

    PubMed  CAS  Google Scholar 

  75. Carmeliet P, Dor Y, Herbert JM et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394(6692):485–490.

    PubMed  CAS  Google Scholar 

  76. Blancher C, Moore JW, Talks KL et al. Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 2000; 60(24):7106–7113.

    PubMed  CAS  Google Scholar 

  77. Hu CJ, Wang LY, Chodosh LA et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23(24):9361–9374.

    PubMed  CAS  Google Scholar 

  78. Morita M, Ohneda O, Yamashita T et al. HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 2003; 22(5):1134–1146.

    PubMed  CAS  Google Scholar 

  79. Rankin EB, Higgins DF, Walisser JA et al. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol Cell Biol 2005; 25(8):3163–3172.

    PubMed  CAS  Google Scholar 

  80. Warnecke C, Zaborowska Z, Kurreck J et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 2004; 18(12):1462–1464.

    PubMed  CAS  Google Scholar 

  81. Shinojima T, Oya M, Takayanagi A et al. Renal cancer cells lacking hypoxia inducible factor (HIF)-1{alpha} expression maintain vascular endothelial growth factor expression through HIF-2{alpha}. Carcinogenesis 2006.

    Google Scholar 

  82. Kim CM, Vocke C, Torres-Cabala C et al. Expression of hypoxia inducible factor-1alpha and 2alpha in genetically distinct early renal cortical tumors. J Urol 2006; 175(5):1908–1914.

    PubMed  CAS  Google Scholar 

  83. Scortegagna M, Ding K, Oktay Y et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat Genet 2003; 35(4): 331–340.

    PubMed  CAS  Google Scholar 

  84. Gruber M, Hu CJ, Johnson RS et al. Acute postnatal ablation of Hif-2{alpha} results in anemia. Proc Natl Acad Sci USA 2007; 104(7):2301–2306.

    PubMed  CAS  Google Scholar 

  85. Shiose A, Kuroda J, Tsuruya K et al. A novel superoxide-producing NAD(P) H oxidase in kidney. J Biol Chem 2001; 276(2):1417–1423.

    PubMed  CAS  Google Scholar 

  86. Geiszt M, Kopp JB, Varnai P et al. Identification of renox, an NAD(P) H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97(14):8010–8014.

    PubMed  CAS  Google Scholar 

  87. Maranchie JK, Zhan Y. Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res 2005; 65(20):9190–9193.

    PubMed  CAS  Google Scholar 

  88. Krause KH. Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 2004; 57(5):S28–S29.

    PubMed  Google Scholar 

  89. Wykoff CC, Pugh CW, Maxwell PH et al. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 2000; 19(54):6297–6305.

    PubMed  CAS  Google Scholar 

  90. Koong AC, Denko NC, Hudson KM et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res 2000; 60(4):883–887.

    PubMed  CAS  Google Scholar 

  91. Jiang Y, Zhang W, Kondo K et al. Gene expression profiling in a renal cell carcinoma cell line: dissecting VHL and hypoxia-dependent pathways. Mol Cancer Res 2003; 1(6):453–462.

    PubMed  CAS  Google Scholar 

  92. Iliopoulos O, Levy AP, Jiang C et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996; 93(20):10595–10599.

    PubMed  CAS  Google Scholar 

  93. Levy AP, Levy NS, Goldberg MA. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 1996; 271(41):25492–25497.

    PubMed  CAS  Google Scholar 

  94. Minchenko A, Salceda S, Bauer T et al. Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 1994; 40(1):35–39.

    PubMed  CAS  Google Scholar 

  95. Minchenko A, Bauer T, Salceda S et al. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 1994; 71(3):374–379.

    PubMed  CAS  Google Scholar 

  96. Wood SM, Gleadle JM, Pugh CW et al. The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 1996; 271(25):15117–15123.

    Google Scholar 

  97. Forsythe JA, Jiang BH, Iyer NV et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16(9):4604–4613.

    PubMed  CAS  Google Scholar 

  98. Brugarolas J, Kaelin WG, Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 2004; 6(1):7–10.

    PubMed  CAS  Google Scholar 

  99. Liu L, Simon MC. Regulation of transcription and translation by hypoxia. Cancer Biol Ther 2004; 3(6):492–497.

    PubMed  CAS  Google Scholar 

  100. Chan CC, Collins AB, Chew EY. Molecular pathology of eyes with von Hippel-Lindau (VHL) Disease: a review. Retina 2007; 27(1):1–7.

    PubMed  Google Scholar 

  101. Currie MJ, Gunningham SP, Turner K et al. Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. J Pathol 2002; 198(4):502–510.

    PubMed  CAS  Google Scholar 

  102. Yamakawa M, Liu LX, Belanger AJ et al. Expression of angiopoietins in renal epithelial and clear cell carcinoma cells: regulation by hypoxia and participation in angiogenesis. Am J Physiol Renal Physiol 2004; 287(4):F649–F657.

    PubMed  CAS  Google Scholar 

  103. Eisenhofer G, Huynh TT, Pacak K et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 2004; 11(4):897–911.

    PubMed  CAS  Google Scholar 

  104. Cheifetz S, Bellon T, Cales C et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 1992; 267(27):19027–19030.

    PubMed  CAS  Google Scholar 

  105. Duwel A, Eleno N, Jerkic M et al. Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol 2007; 28(1):1–8.

    PubMed  Google Scholar 

  106. McAllister KA, Grogg KM, Johnson DW et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994; 8(4):345–351.

    PubMed  CAS  Google Scholar 

  107. Yao Y, Pan Y, Chen J et al. Endoglin (CD105) Expression in Angiogenesis of Primary Hepatocellular Carcinomas: Analysis using Tissue Microarrays and Comparisons with CD34 and VEGF. Ann Clin Lab Sci 2007; 37(1):39–48.

    PubMed  CAS  Google Scholar 

  108. Taskiran C, Erdem O, Onan A et al. The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int J Gynecol Cancer 2006; 16(5):1789–1793.

    PubMed  CAS  Google Scholar 

  109. Erdem O, Taskiran C, Onan MA et al. CD105 expression is an independent predictor of survival in patients with endometrial cancer. Gynecol Oncol 2006; 103(3):1007–1011.

    PubMed  CAS  Google Scholar 

  110. Sugita Y, Takase Y, Mori D et al. Endoglin (CD 105) is expressed on endothelial cells in the primary central nervous system lymphomas and correlates with survival. J Neurooncol 2006.

    Google Scholar 

  111. Sanchez-Elsner T, Botella LM, Velasco B et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 2002; 277(46):43799–43808.

    PubMed  CAS  Google Scholar 

  112. Bernhardt WM, Wiesener MS, Weidemann A et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 2007; 170(3):830–842.

    PubMed  CAS  Google Scholar 

  113. Inoue A, Yanagisawa M, Kimura S et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1989; 86(8):2863–2867.

    PubMed  CAS  Google Scholar 

  114. Clozel M, Salloukh H. Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann Med 2005; 37(1):2–12.

    PubMed  CAS  Google Scholar 

  115. Rosano L, Spinella F, Di C, V et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol Cancer Ther 2006; 5(4):833–842.

    PubMed  CAS  Google Scholar 

  116. Rosano L, Spinella F, Di C, V et al. Endothelin-1 is required during epithelial to mesenchymal transition in ovarian cancer progression. Exp Biol Med (Maywood) 2006; 231(Maywood):1128–1131.

    CAS  Google Scholar 

  117. Maglione D, Guerriero V, Viglietto G et al. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991; 88(20):9267–9271.

    PubMed  CAS  Google Scholar 

  118. Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett 2006; 580(12):2879–2887.

    PubMed  CAS  Google Scholar 

  119. Roy H, Bhardwaj S, Babu M et al. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A. Hum Gene Ther 2005; 16(12):1422–1428.

    PubMed  CAS  Google Scholar 

  120. Ahmed A, Dunk C, Ahmad S et al. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen–a review. Placenta 2000; 21 Suppl A:S16–S24.

    PubMed  Google Scholar 

  121. Autiero M, Waltenberger J, Communi D et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9(7):936–943.

    PubMed  CAS  Google Scholar 

  122. Kasper LH, Brindle PK. Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia-responsive transcription. Cell Cycle 2006; 5(2):142–146.

    PubMed  CAS  Google Scholar 

  123. Patel TH, Kimura H, Weiss CR et al. Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 2005; 68(1):144–154.

    PubMed  CAS  Google Scholar 

  124. Stewart AJ, Houston B, Farquharson C. Elevated expression of hypoxia inducible factor-2alpha in terminally differentiating growth plate chondrocytes. J Cell Physiol 2006; 206(2):435–440.

    PubMed  CAS  Google Scholar 

  125. Hardee ME, Arcasoy MO, Blackwell KL et al. Erythropoietin biology in cancer. Clin Cancer Res 2006; 12(2):332–339.

    PubMed  CAS  Google Scholar 

  126. Vogel TW, Brouwers FM, Lubensky IA et al. Differential expression of erythropoietin and its receptor in von hippel-lindau-associated and multiple endocrine neoplasia type 2-associated pheochromocytomas. J Clin Endocrinol Metab 2005; 90(6):3747–3751.

    PubMed  CAS  Google Scholar 

  127. Vogel TW, Vortmeyer AO, Lubensky IA et al. Coexpression of erythropoietin and its receptor in endolymphatic sac tumors. J Neurosurg 2005; 103(2):284–288.

    PubMed  CAS  Google Scholar 

  128. Lee YS, Vortmeyer AO, Lubensky IA et al. Coexpression of erythropoietin and erythropoietin receptor in von Hippel-Lindau disease-associated renal cysts and renal cell carcinoma. Clin Cancer Res 2005; 11(3):1059–1064.

    PubMed  CAS  Google Scholar 

  129. Gordeuk VR, Prchal JT. Vascular complications in Chuvash polycythemia. Semin Thromb Hemost 2006; 32(3):289–294.

    PubMed  Google Scholar 

  130. Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem Soc Trans 2002; 30(2):207–210.

    PubMed  CAS  Google Scholar 

  131. Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10(1):39–49.

    PubMed  CAS  Google Scholar 

  132. Sandberg T, Casslen B, Gustavsson B et al. Human endothelial cell migration is stimulated by urokinase plasminogen activator:plasminogen activator inhibitor 1 complex released from endometrial stromal cells stimulated with transforming growth factor beta1; possible mechanism for paracrine stimulation of endometrial angiogenesis. Biol Reprod 1998; 59(4):759–767.

    PubMed  CAS  Google Scholar 

  133. Andreasen PA, Kjoller L, Christensen L et al. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72(1):1–22.

    PubMed  CAS  Google Scholar 

  134. Los M, Zeamari S, Foekens JA et al. Regulation of the urokinase-type plasminogen activator system by the von Hippel-Lindau tumor suppressor gene. Cancer Res 1999; 59(17):4440–4445.

    PubMed  CAS  Google Scholar 

  135. Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 2006; 66(12):6264–6270.

    PubMed  CAS  Google Scholar 

  136. Koochekpour S, Jeffers M, Wang PH et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999; 19(9):5902–5912.

    PubMed  CAS  Google Scholar 

  137. Zhou Z, Apte SS, Soininen R et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 2000; 97(8):4052–4057.

    PubMed  CAS  Google Scholar 

  138. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 2005; 24(6):1043–1052.

    PubMed  CAS  Google Scholar 

  139. Petrella BL, Brinckerhoff CE. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer 2006; 5:66.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bottaro, D.P., Tan, N., Linehan, W.M. (2008). Regulation of Angiogenesis by von Hippel Lindau Protein and HIF2. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics