Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atema J (1973) Microtubule theory of sensory transduction. J Theor Biol 38:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Atema J (1975) Stimulus transmission along microtubules in sensory cells: an hypothesis. In: Borgers M, deBrabander M (eds) Microtubules and Microtubule Inhibitors. Amsterdam: North-Holland, pp. 247–257.

    Google Scholar 

  • Baker JD, Adhikarakunnathu S, Kernan MJ (2004) Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development 131:3411–3422.

    Article  PubMed  CAS  Google Scholar 

  • Bennet-Clark HC (1971) Acoustics of insect song. Nature 234:255–259.

    Article  Google Scholar 

  • Bialek, W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–468

    Article  PubMed  CAS  Google Scholar 

  • Boekhoff-Falk G (2005) Hearing in Drosophila: development of Johnston’s organ and emerging parallels to vertebrate ear development. Dev Dyn 232:550–558.

    Article  PubMed  CAS  Google Scholar 

  • Boo KS, Richards AG (1975) Fine structure of the scolopidia in Johnston’s organ of female Aedes aegypti compared with that of male. J Insect Physiol 21:1129–1139.

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS (1993) Another look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39:187–200.

    Article  Google Scholar 

  • Caldwell, J, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189.

    Article  PubMed  CAS  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification in vitro. Nat Neurosci 8:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP et al. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730.

    Article  PubMed  CAS  Google Scholar 

  • Coro F, Kössl M (1998) Distortion-product otoacoustic emissions from the tympanic organ in two noctuid moths. J Comp Physiol A 183:525–531.

    Article  Google Scholar 

  • Coro F, Kössl M (2001) Components of the 2f1 − f2 distortion-product otoacoustic emission in a moth. Hear Res 162:126–133.

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393.

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988.

    PubMed  CAS  Google Scholar 

  • Erler G (1983) Sensitivity of an insect mechanoreceptor after destruction of dendritic microtubules by means of vinblastine. Cell Tissue Res 229:673–684.

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–28.

    Google Scholar 

  • French AS (1988) Transduction mechanisms of mechanosensilla. Annu Rev Entomol 33:39–58.

    Article  Google Scholar 

  • Fritzsch B, Beisel KW (2004) Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development. Brain Behav Evol 64:182–197.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Cyr JL (2003) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545.

    Article  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee H, Chang D-J, Kaang B-K, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C (2004) Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 41:9059–9066.

    Google Scholar 

  • Göpfert MC, Albert JT, Nadrowksi B & Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000.

    Article  PubMed  CAS  Google Scholar 

  • Göpfert MC, Robert D (2000) Nanometre-range acoustic sensitivity in male and female mosquitoes. Proc R Soc Lond B 267:453–457.

    Article  Google Scholar 

  • Göpfert MC, Robert D (2001a) Active auditory mechanics in mosquitoes. Proc R Soc Lond B 268:333–339.

    Article  Google Scholar 

  • Göpfert MC, Robert D (2001b) Turning the key on Drosophila audition. Nature 411:908.

    Google Scholar 

  • Göpfert MC, Robert D (2002) The mechanical basis of Drosophila audition. J Exp Biol 205:1199–1208.

    PubMed  Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519.

    Article  PubMed  CAS  Google Scholar 

  • Göpfert MC, Briegel H, Robert D (1999) Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J Exp Biol 202:2727–2738.

    PubMed  Google Scholar 

  • Göpfert MC, Humphris ADL, Albert JT, Robert D, Hendrich O (2005) Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci USA 102:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1994) The mating of a fly. Science 264:1702–1714.

    Article  PubMed  CAS  Google Scholar 

  • Hassan BA, Bellen HJ (2000) Doing the MATH: is the mouse a good model for fly development? Genes Dev 14:1852–1865.

    Google Scholar 

  • Höger U, Seyfarth E-A (2001) Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider split sensilla. J Comp Phys A 187:727–736.

    Article  Google Scholar 

  • Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–R226.

    Google Scholar 

  • Howard J, Roberts WM and Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem 17:99–124.

    Google Scholar 

  • Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450.

    Article  PubMed  CAS  Google Scholar 

  • Hoy RR, Popper AN, Fay RR (eds) (1998). Comparative Hearing: Insects. New York: Springer-Verlag.

    Google Scholar 

  • Jarman AP (2002) Studies of mechanosensation using the fly. Hum Mol Genet 11:1215–1218.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy HU, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–833.

    Article  PubMed  CAS  Google Scholar 

  • Kernan M, Zuker C (1995) Genetic approaches to mechanosensory transduction. Curr Opin Neurobiol 5:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Kössl M, Boyan GS (1998a) Acoustic distortion products from the ear of a grasshopper. J Acoust Soc Am 104:326–335.

    Article  Google Scholar 

  • Kössl M, Boyan GS (1998b) Otoacoustic emissions from a nonvertebrate ear. Naturwissenschaften 85:124–127.

    Article  Google Scholar 

  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development132:1907–1921.

    Google Scholar 

  • Kuster JE, French AS, Sanders EJ (1983) The effect of microtubule dissociating agents on the physiology and cytology of the sensory neuron in the femoral tactile spine of the cockroach, Periplaneta americana L. Proc R Soc Lond B 219:397–412.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Martin P, Hudspeth AJ (2001) Compressive nonlinearity in the hair bundle’s active response to mechanical stimulation. Proc Natl Acad Sci USA 98:14386–14391.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Hudspeth AJ, Jülicher F (2001) Comparison of a hair bundle’s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. Proc Natl Acad Sci USA 98:14380–14385.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Bozovic D, Choe Y, Hudspeth AJ (2003) Spontaenous oscillation by hair bundles of the bullfrog’s sacculus. J Neurosci 23:4533–4548.

    PubMed  CAS  Google Scholar 

  • Michelsen A (1968) Frequency discrimination in the locust ear by means of four groups of receptor cells. Nature 220:585–586.

    Article  PubMed  CAS  Google Scholar 

  • Miller LA, Surlykke A (2001) How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. Bioscience 51:570–581.

    Article  Google Scholar 

  • Mills DM, Rubel EW (1996) Development of the cochlear amplifier. J Acoust Soc Am 100:428–441.

    Article  PubMed  CAS  Google Scholar 

  • Moran DT, Varela FJ, Rowley III JC (1977) Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci USA 74:793–797.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson T (2005) Fishing for key players in mechanotransduction. Trends Neurosci 28:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Yoshimitsu K, Kido M, Hirokawada N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837.

    Google Scholar 

  • Odor DL, Blandau RJ (1985) Observations of the solitary cilium of rabbit oviductal epithelium: its motility and ultrastructure. Am J Anat 174:437–453.

    Article  PubMed  CAS  Google Scholar 

  • Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301.

    Google Scholar 

  • Robert D, Göpfert MC (2002) Novel schemes for hearing and acoustic orientation in insects. Curr Opin Neurobiol 12:715–720.

    Article  PubMed  CAS  Google Scholar 

  • Robert D, Göpfert MC (2004) (eds) The Biology of Insect Audition. Micr Res Tech 63:311–412.

    Article  Google Scholar 

  • Robert D, Hoy RR (1998) The evolutionary innovation of tympanal hearing in Diptera. In: Hoy RR, Popper AN, Fay RR (eds), Comparative Hearing: Insects. New York: Springer-Verlag, pp. 197–227.

    Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organ of noctuid moths. J Exp Zool 134:127–157.

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL, Baron A, and Surek B (1984) Striated flagellar roots: isolation and characterization of a calcium-modulated contractile organelle. J Cell Biol 99:962–970.

    Article  PubMed  CAS  Google Scholar 

  • Sarpal R, Todi SV, Sivan-Loukianova E, Shirolikar S, Subramanian N, Raff EC, Erickson JW, Ray K, Eberl DF (2003) Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol 13:1687–1696.

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E, Bornens M (1995) In search of a function for centrins. Trends Cell Biol 5:197–201.

    Article  PubMed  CAS  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Surlykke A (1984) Hearing in notodontid moths—a tympanic organ with a single auditory neurons. J Exp Biol 113:323–335.

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith DS (eds) Insect Biology in Future. New York: Academic Press, pp. 735–763.

    Google Scholar 

  • Thurm U, Erler G, Goedde J, Kastrup H, Keil T, Voelker W and Vohwinkel B (1983). Cilia specialized for mechanoreception. J Submicrosc Cytol 15:151–155.

    Google Scholar 

  • Tischner H (1953) Über den Gehörsinn von Stechmücken. Acustica 3:335–343.

    Google Scholar 

  • Todi SV, Sharma Y, Eberl DF (2004) Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc Res Tech 63:388–399.

    Article  PubMed  Google Scholar 

  • van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394:773–776.

    Article  CAS  Google Scholar 

  • von Schilcher F (1976) The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim Behav 24:18–26.

    Article  Google Scholar 

  • Walker RG, Willingham AT and Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234.

    Google Scholar 

  • Weber T, Göpfert MC, Winter H, Zimmermann U, Kohler H, Meier A, Hendrich O, Rohbock K, Robert D, Knipper M. (2003) Expression of prestin-homologous solute carrier (SLC26) in auditory organs of insects and lower vertebrates. Proc Natl Acad Sci USA 100:7690–7695.

    Article  PubMed  CAS  Google Scholar 

  • Windmill J, Göpfert MC, Robert D (2005) Tympanal travelling wave in migratory locusts. J Exp Biol 208:157–168.

    Article  PubMed  Google Scholar 

  • Wolfrum U (1991) Centrin- and UPalpha-actinin-like immunoreactivity in the ciliary rootlets of insect sensilla. Cell Tissue Res 266:321–238.

    Article  Google Scholar 

  • Wolfrum U (1992) Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors. Biol Cell 76:373–381.

    Article  PubMed  CAS  Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337.

    Article  PubMed  Google Scholar 

  • Yager DD (1999) Structure, development and evolution of insect auditory systems. Microsc Res Tech 47:380–400.

    Article  PubMed  CAS  Google Scholar 

  • Yates GK (1995) Cochlear structure and function. In: Moore BCJ (ed), Hearing. San Diego, CA: Academic Press, pp. 41–74.

    Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Göpfert, M.C., Robert, D. (2008). Active Processes in Insect Hearing. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_6

Download citation

Publish with us

Policies and ethics