Critical Oscillators as Active Elements in Hearing

  • Thomas A.J. Duke
  • Frank Jülicher
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 30)


Hair Cell Hopf Bifurcation Basilar Membrane Active Oscillator Otoacoustic Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashmore J (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J Physiol 388:323–347.PubMedGoogle Scholar
  2. Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.PubMedGoogle Scholar
  3. Boukas EK, Liu ZK (2002) Deterministic and Stochastic Time-Delay Systems. Boston: Birkhäuser.Google Scholar
  4. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.PubMedCrossRefGoogle Scholar
  5. Camalet S, Duke T, Jülicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97:3138–3188.CrossRefGoogle Scholar
  6. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.PubMedCrossRefGoogle Scholar
  7. Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc Natl Acad Sci USA 95:15321–15326.PubMedCrossRefGoogle Scholar
  8. Coullet P, Goldstein RE, Gunaratne GH (1989) Parity-breaking transitions of modulated patterns in hydrodynamic systems. Phys Rev Lett 63:1954–1957.PubMedCrossRefGoogle Scholar
  9. Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364: 359–379.PubMedGoogle Scholar
  10. Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.PubMedGoogle Scholar
  11. Dallos P, Popper AN, Fay RR (eds) (1996) The Cochlea. New York: Springer-Verlag.Google Scholar
  12. de Boer E (1980) Auditory physics. Physical principles in hearing theory. Phys Rev 62:87–174.Google Scholar
  13. de Boer E (1996) Mechanics of the cochlea. In: Dallos P, Popper AN, Fay RR (eds.), The Cochlea. New York: Springer-Verlag, pp. 258–317.Google Scholar
  14. Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear Res 60:89–102.PubMedCrossRefGoogle Scholar
  15. Duifuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1985) Modelling the cochlear partition with coupled van der Pol oscillators. In: Allen JB (ed) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 290–297.Google Scholar
  16. Duke T, Jülicher F (2003) Active traveling wave in the cochlea. Phys Rev Lett 90: 158101(1–4).Google Scholar
  17. Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393.PubMedCrossRefGoogle Scholar
  18. Eguiluz V, Ospeck M, Choe Y, Hudspeth AJ, Magnasco MO (2000) Essential nonlinearities in hearing. Phys Rev Lett 84:5232–5235.PubMedCrossRefGoogle Scholar
  19. Forster D. (1990) Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions. Redwood City, CA: Addison-Wesley.Google Scholar
  20. Gold T (1948) The physical basis of the action of the cochlea. Proc R Soc B 135:492–498.Google Scholar
  21. Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc A 41:676–689.CrossRefGoogle Scholar
  22. Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519.Google Scholar
  23. Göpfert MC Humphris ADL, Albert JT, Robert D Hendrich O (2005) Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci USA 102:325–330.Google Scholar
  24. Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.PubMedCrossRefGoogle Scholar
  25. Helmholtz H (1954) On the Sensation of Tone. New York: Dover.Google Scholar
  26. Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108: 371–381.PubMedCrossRefGoogle Scholar
  27. Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.PubMedCrossRefGoogle Scholar
  28. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.PubMedCrossRefGoogle Scholar
  29. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.PubMedCrossRefGoogle Scholar
  30. Hudspeth AJ (1997) Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7: 480–486.PubMedCrossRefGoogle Scholar
  31. Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.PubMedCrossRefGoogle Scholar
  32. Jülicher F, Prost J (1997) Spontaneous oscillations of collective molecular motors. Phys Rev Lett 78:4510–4513.CrossRefGoogle Scholar
  33. Jülicher F, Andor D, Duke T (2001) Physical basis of two-tone interference in hearing. Proc Natl Acad Sci USA 98:9080–9085.PubMedCrossRefGoogle Scholar
  34. Kachar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair-cells. Nature 322:365–368.PubMedCrossRefGoogle Scholar
  35. Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci USA 97:13336–13341.PubMedCrossRefGoogle Scholar
  36. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883.PubMedCrossRefGoogle Scholar
  37. Kolston PJ, de Boer E., Viergever MA, Smoorenburg GF (1990) Realistic mechanical tuning in a micromechanical cochlear model. J Acoust Soc Am 88:1794–1801.PubMedCrossRefGoogle Scholar
  38. Köppl C (1995) Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate auditory organs. In: Manley GA, Klump GM, Kppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research, Singapore: World Scientific, pp. 207–218.Google Scholar
  39. Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations Nat Neurosci 5:41–47.Google Scholar
  40. Lighthill J (1981) Energy-flow in the cochlea. J Fluid Mech 106:149–213.CrossRefGoogle Scholar
  41. Ma SK (2000) Modern Theory of Critical Phenomena. New York: Perseus Books.Google Scholar
  42. Magnasco MO (2003) A wave traveling over a Hopf instability shapes the cochlear tuning curve. Phys Rev Lett 90:058101-1–058104-4.CrossRefGoogle Scholar
  43. Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:1173–11743.CrossRefGoogle Scholar
  44. Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.PubMedGoogle Scholar
  45. Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.PubMedCrossRefGoogle Scholar
  46. Manley GA, Kirk DL, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Natl Acad Sci USA 98:2826–2831.PubMedCrossRefGoogle Scholar
  47. Manley GA, Popper AN, Fay RR, eds (2004) Evolution of the Vertebrate Auditory System, Springer Handbook of Auditory Research. New York: Springer-Verlag.Google Scholar
  48. Martin P, Hudspeth AJ (1999) Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96:14306–14311.PubMedCrossRefGoogle Scholar
  49. Martin P, Hudspeth AJ (2001) Compressive nonlinearity in the hair bundle’s active response to mechanical stimulation. Proc Acad Natl Sci USA 98:14386–14391.CrossRefGoogle Scholar
  50. Martin P, Metha AD, Hudspeth AJ (2000) Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:12026–12031.PubMedCrossRefGoogle Scholar
  51. Martin P, Hudspeth AJ, Jülicher F (2001) Comparison of a hair bundle’s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. Proc Natl Acad Sci USA 98:14380–14385.PubMedCrossRefGoogle Scholar
  52. Martin P, Bozovic D, Choe Y, Hudspeth AJ (2003) Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J Neurosci 23:4533–4548.PubMedGoogle Scholar
  53. Moreau L, Sontag E, Arcat M (2003) Feedback tuning of bifurcations. Syst Contr Lett 50:229–239.CrossRefGoogle Scholar
  54. Nadrowski B, Martin P Jülicher F (2004) Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. Proc Natl Acad Sci USA 101:12195–12200.Google Scholar
  55. Nilsen KE, Russell IJ (2000) The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proc Natl Acad Sci USA 97:11751–11758.PubMedCrossRefGoogle Scholar
  56. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between sterocilia in the guinea-pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.PubMedCrossRefGoogle Scholar
  57. Probst R (1990) Otoacoustic emissions: an overview. Adv Otorhinolaryngol 44:1–91.PubMedGoogle Scholar
  58. Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49:1218–1231.PubMedCrossRefGoogle Scholar
  59. Rhode WS, Cooper NP (1993) Two-tone suppression and distortion production on the basilar membrane in the hook region of the cat and guinea pig cochleae. Hear Res 66:31–45.PubMedCrossRefGoogle Scholar
  60. Ricci AJ, Crawford AC Fettiplace R. (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.Google Scholar
  61. Risler T, Prost J, Jülicher F (2004) Universal critical behavior of noisy coupled oscillators. Phys Rev Lett 93:175702–175704.PubMedCrossRefGoogle Scholar
  62. Risler T, Prost J, Jülicher F(2005) Universal critical behavior of noisy coupled oscillators: a renormalization group study. Phys Rev E 72:016130–1 to 016130–18.CrossRefGoogle Scholar
  63. Robles L, Ruggero M (2001) Mechanics of the mammalian cochlea. Physiol Rev 81: 1305–1352.PubMedGoogle Scholar
  64. Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.PubMedCrossRefGoogle Scholar
  65. Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.PubMedGoogle Scholar
  66. Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087–1099.PubMedGoogle Scholar
  67. Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.PubMedCrossRefGoogle Scholar
  68. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72: 131–141.PubMedCrossRefGoogle Scholar
  69. Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.PubMedCrossRefGoogle Scholar
  70. Stoop R, Kern A (2004) Two-tone suppression and combination tone generation as computations performed by the Hopf cochlea. Phys Rev Lett 93:268103–268104.PubMedCrossRefGoogle Scholar
  71. Stratonovich RL (1981) Topics in the Theory of Random Noise, vol. II. New York: Gordon and Breach.Google Scholar
  72. Strogatz SH (2001) Nonlinear Dynamics and Chaos. New York: Perseus Books.Google Scholar
  73. van der Pol B (Nov. 1926) On relaxation oscillations. Philos Mag 2:978–992.Google Scholar
  74. van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. Amsterdan: North-Holland.Google Scholar
  75. Vilfan A, Duke T (2003a) Instabilities in the transient response of muscle. Biophys J 85:818–827.Google Scholar
  76. Vilfan A, Duke T (2003b) Two adaptation processes in auditory hair cells together can provide an active amplifier. Biophys J 85:191–203.CrossRefGoogle Scholar
  77. von Bekésy G (1960) Experiments in Hearing. New York: McGraw-Hill.Google Scholar
  78. Wiggins S (2003) Introduction to Applied Nonlinear Dynamics and Chaos. New York: Springer.Google Scholar
  79. Wu YJ, Ricci AJ, Fettiplace R (1999) Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82:2171–2181.PubMedGoogle Scholar
  80. Zweig G (1976) Basilar membrane motion. Cold Spring Harbor Symp Quant Biol 40: 619–633.PubMedGoogle Scholar
  81. Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89: 1229–1254.PubMedCrossRefGoogle Scholar
  82. Zwicker E, Fastl H. (1999) Psychoacoustics. Berlin: Springer-Verlag.Google Scholar
  83. Zwislocki J (1948) Theorie der Schneckenmechanik: Qualitative und quantitative Analyse Acta Otolaryngol Suppl 72:1–76.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas A.J. Duke
  • Frank Jülicher

There are no affiliations available

Personalised recommendations