Relationships Between Otoacoustic and Psychophysical Measures of Cochlear Function

  • Tiffany A. Johnson
  • Michael P. Gorga
  • Stephen T. Neely
  • Andrew J. Oxenham
  • Christopher A. Shera
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 30)


Otoacoustic Emission Behavioral Threshold Distortion Product Otoacoustic Emission Simultaneous Masking Equivalent Rectangular Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdala C (1998) A developmental study of distortion productotoacoustic emission (2f 1f 2) suppression in humans. Hear Res 121:125–138.PubMedCrossRefGoogle Scholar
  2. Abdala C (2001) Maturation of the human cochlear amplifier:distortion product otoacoustic emission suppression tuning curvesrecorded at low and high primary tone levels. J Acoust Soc Am 110:1465–1476.PubMedCrossRefGoogle Scholar
  3. Abdala C (2003) A longitudinal study of distortion productotoacoustic emission ipsilateral suppression and input/outputcharacteristics in human neonates. J Acoust Soc Am 114:3239–3250.PubMedCrossRefGoogle Scholar
  4. Abdala C, Fitzgerald TS (2003) Ipsilateral distortion productotoacoustic emission (2f 1f 2) suppression in children withsensorineural hearing loss. J Acoust Soc Am 114:919–931.PubMedCrossRefGoogle Scholar
  5. Bacon SP, Moore BCJ (1986) Temporal effects in masking and theirinfluence on psychophysical tuning curves. J Acoust Soc Am80:1638–1645.Google Scholar
  6. Bacon SP, Viemeister NF (1985) Simultaneous masking by gating andcontinuous sinusoidal maskers. J Acoust Soc Am 78:1220–1230.PubMedCrossRefGoogle Scholar
  7. Bacon SP, Boden LN, Lee J, Repovsch JL (1999) Growth ofsimultaneous masking for fm < fs:effects of overall frequency and level. J Acoust Soc Am 106:341–350.PubMedCrossRefGoogle Scholar
  8. Braun M (1997) Frequency spacing of multiple spontaneousotoacoustic emissions shows relation to critical bands: alarge-scale cumulative study. Hear Res 114:197–203.PubMedCrossRefGoogle Scholar
  9. Brown AM, Kemp DT (1984) Suppressibility of the 2f 1f 2 stimulated acoustic emissions in gerbil and man. Hear Res 13:29–37.PubMedCrossRefGoogle Scholar
  10. Cianfrone G, Altissimi G, Cervellini M, Musacchio A, Turchetta R(1994) Suppression tuning characteristics of 2f 1f 2 distortion product otoacoustic emissions. Br J Audiol 28:205–212.PubMedCrossRefGoogle Scholar
  11. Cooper NP, Rhode WS (1997) Mechanical responses to two-tonedistortion products in the apical and basal turns of the mammaliancochlea. J Neurophysiol 78:261–270.PubMedGoogle Scholar
  12. Dorn PA, Konrad-Martin D, Neely ST, Keefe DH, Cyr E, Gorga MP(2001) Distortion product otoacoustic emission input/outputfunctions in normal-hearing and hearing-impaired human ears. JAcoust Soc Am 110:3119–3131.CrossRefGoogle Scholar
  13. Dubno JR, Dirks DD (1989) Auditory filter characteristics andconstant recognition for hearing-impaired listeners. J Acoust SocAm 85:1666–1675.CrossRefGoogle Scholar
  14. Egan JP, Hake HW (1950) On the masking pattern of a simpleauditory stimulus. J Acoust Soc Am 22:622–630.CrossRefGoogle Scholar
  15. Elliott E (1958) A ripple effect in the audiogram. Nature 181:1076.PubMedCrossRefGoogle Scholar
  16. Epstein M, Florentine M (2005) Inferring basilar-membrane motionfrom tone-burst otoacoustic emissions and psychoacousticmeasurements. J Acoust Soc Am 117:263–274.Google Scholar
  17. Epstein M, Buus S, Florentine M (2004) The effects of windowdelay, delinearization, and frequency on tone-burst otoacousticemission input-output measurements. J Acoust Soc Am 116:1160–1167.PubMedCrossRefGoogle Scholar
  18. Fletcher H, Munson WA (1933) Loudness, its definition,measurement, and calculation. J Acoust Soc Am 5:82–108.CrossRefGoogle Scholar
  19. Furst M, Reshef I, Attias J (1992) Manifestations of intense noisestimulation on spontaneous otoacoustic emission and thresholdmicrostructure: experiment and model. J Acoust Soc Am 91:1003–1014.PubMedCrossRefGoogle Scholar
  20. Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapesfrom notched-noise data. Hear Res 47:103–138.PubMedCrossRefGoogle Scholar
  21. Gorga MP, Neely ST, Dorn PA, Konrad-Martin D (2002a) The use ofdistortion product otoacoustic emission suppression as an estimateof response growth. J Acoust Soc Am 111:271–284.CrossRefGoogle Scholar
  22. Gorga MP, Neely ST, Dorn PA, Dierking D, Cyr E (2002b) Evidence ofupward spread of suppression in DPOAE measurements. J Acoust SocAm 112:2910–2920.CrossRefGoogle Scholar
  23. Gorga MP, Neely ST, Dierking DM, Dorn PA, Hoover BM, Fitzpatrick DF (2003) Distortion product otoacoustic emission suppressiontuning curves in normal-hearing and hearing-impaired human ears. J Acoust Soc Am 114:263–278.PubMedCrossRefGoogle Scholar
  24. Harris FP, Probst R, Xu L (1992) Supression of the 2f 1f 2 otoacoustic emission in humans. Hear Res 64:133–141.PubMedCrossRefGoogle Scholar
  25. Hartmann WM (1998) Signals, Sounds, and Sensation. New York:Springer-Verlag, pp. 251–252.Google Scholar
  26. He N-j, Schmiedt RA (1993) Fine structure of the 2f 1f 2 acoustic distortion product: changes with primarylevel. J Acoust Soc Am 94:2659–2669.PubMedCrossRefGoogle Scholar
  27. Heitmann J, Waldmann B, Schnitzler H-U, Plinkert PK, Zenner H-P(1998) Suppression of distortion product otoacoustic emissions(DPOAE) near 2f 1f 2 removes DP-gram finestructure—Evidence for a secondary generator. J Acoust Soc Am 103:1527–1531.CrossRefGoogle Scholar
  28. Hicks ML, Bacon SP (1999) Psychophysical measures of auditorynonlinearities as a function of frequency in individuals withnormal hearing. J Acoust Soc Am 105:326–338.PubMedCrossRefGoogle Scholar
  29. Johnson TA, Neely ST, Dierking DM, Hoover BM, Gorga MP (2004) Analternate approach to constructing distortion product otoacousticemission (DPOAE) suppression tuning curves. J Acoust Soc Am 116:3263–3266.PubMedCrossRefGoogle Scholar
  30. Kalluri R, Shera CA (2001) Distortion-product source unmixing: atest of the two-mechanism model for DPOAE generation. J Acoust SocAm 109:622–637.CrossRefGoogle Scholar
  31. Kim DO (1983) Spatiotemporal response patterns in populations ofcochlear nerve fibers: single- and two-tone studies. Ann NY AcadSci 405:68–78.CrossRefGoogle Scholar
  32. Kim DO, Molnar CE (1979) A population study of cochlear nervefibers: comparison of spatial distributions of average-rate andphase-locking measures of responses to single tones. JNeurophysiol 42:16–30.Google Scholar
  33. Kim DO, Chang SO, Sirianni JG (1990) A population study ofauditory-nerve fibers in unanesthetized decerebrate cats:responses to pure tones. J Acoust Soc Am 87:1648–1655.PubMedCrossRefGoogle Scholar
  34. Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Gorga MP (2001)Sources of distortion product otoacoustic emissions revealed bysuppression experiments and inverse fast Fourier transforms innormal ears. J Acoust Soc Am 109:2862–2879.PubMedCrossRefGoogle Scholar
  35. Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP(2002) Sources of DPOAEs revealed by suppression experiments,inverse fast Fourier transforms, and SFOAEs in impaired ears. JAcoust Soc Am 111:1800–1809.CrossRefGoogle Scholar
  36. Kummer P, Janssen T, Arnold W (1995) Suppression tuningcharacteristics of the 2f 1f 2 distortion-productotoacoustic emission in humans. J Acoust Soc Am 98:197–210.PubMedCrossRefGoogle Scholar
  37. Kummer P, Janssen T, Arnold W (1998) The level and growth behaviorof the 2f 1f 2 distortion product otoacousticemission and its relationship to auditory sensitivity in normalhearing and cochlear hearing loss. J Acoust Soc Am 103:3431–3444.PubMedCrossRefGoogle Scholar
  38. Liberman MC (1990) Effects of chronic cochlear de-efferentation onauditory-nerve response. Hear Res 49:209–224.PubMedCrossRefGoogle Scholar
  39. Long GR (1984) The microstructure of quiet and masked thresholds.Hear Res 15:73–87.PubMedCrossRefGoogle Scholar
  40. Long GR, Tubis A (1988a) Investigations into the nature of theassociation between threshold microstructure and otoacousticemissions. Hear Res 36:125–138.CrossRefGoogle Scholar
  41. Long GR, Tubis A (1988b) Modification of spontaneous and evokedotoacoustic emissions and associated psychoacoustic microstructureby aspirin consumption. J Acoust Soc Am 84:1343–1353.CrossRefGoogle Scholar
  42. Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearitybetween 500 and 8000 Hz in listeners with normal hearing. J AcoustSoc Am 113:951–960.CrossRefGoogle Scholar
  43. Lutman ME, Deeks J (1999) Correspondence amongst microstructurepatterns observed in otoacoustic emissions and Bekesy audiometry.Audiol 38:263–266.CrossRefGoogle Scholar
  44. Martin GK, Jassir D, Stagner BB, Whitehead ML, Lonsbury-Martin BL(1998) Locus of generation for the 2f 1f 2 vs 2f 1f 2 distortion-product otoacoustic emissionsin normal-hearing humans revealed by suppression tuning, onsetlatencies, and amplitude correlations. J Acoust Soc Am 103:1957–1971.PubMedCrossRefGoogle Scholar
  45. Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL (2003) Suppression and enhancement of distortion-product otoacousticemissions by interference tones above f_2. II. Findings inhumans. Hear Res 177:111–122.PubMedCrossRefGoogle Scholar
  46. Mauermann M, Uppenkamp S, van Hengel PWJ, Kollmeier B (1999a) Evidence for the distortion product frequency place as a source ofdistortion product otoacoustic emission (DPOAE) fine structure inhumans. I. Fine structure and higher-order DPOAE as a function ofthe frequency ratio f2/f1. J Acoust Soc Am 106:3473–3483.CrossRefGoogle Scholar
  47. Mauermann M, Uppenkamp S, van Hengel PWJ, Kollmeier B (1999b) Evidence for the distortion product frequency place as a source ofdistortion product otoacoustic emission (DPOAE) fine structure inhumans. II. Fine structure for different shapes of cochlearhearing loss. J Acoust Soc Am 106:3484–3491.CrossRefGoogle Scholar
  48. Mauermann M, Long GR, Kollmeier B (2004) Fine structure of hearingthreshold and loudness perception. J Acoust Soc Am 116:1066–1080.PubMedCrossRefGoogle Scholar
  49. Mills DM (1998) Interpretation of distortion product otoacousticemission measurements. II. Estimating tuning characteristics usingthree stimulus tones. J Acoust Soc Am 103:507–523.PubMedCrossRefGoogle Scholar
  50. Moore BCJ (1978) Psychophysical tuning curves measured insimultaneous and forward masking. J Acoust Soc Am 63:524–532.PubMedCrossRefGoogle Scholar
  51. Moore BCJ, Glasberg BR (1983) Suggested formulae for calculatingauditory-filter bandwidths and excitation patterns. J Acoust SocAm 74:750–753.CrossRefGoogle Scholar
  52. Moore BCJ, Glasberg BR, Roberts B (1984) Refining the measurementof psychophysical tuning curves. J Acoust Soc Am 76:1057–1066.PubMedCrossRefGoogle Scholar
  53. Moore BCJ, Poon PWF, Bacon SP, Glasberg BR (1987) The temporalcourse of masking and the auditory filter shape. J Acoust Soc Am 81:1873–1880.PubMedCrossRefGoogle Scholar
  54. Moore BCJ, Peters RW, Glasberg BR (1990) Auditory filter shapes atlow center frequencies. J Acoust Soc Am 88:132–140.PubMedCrossRefGoogle Scholar
  55. Moore BCJ, Vickers DA, Plack CJ, Oxenham AJ (1999) Inter-relationship between different psychoacoustic measuresassumed to be related to the cochlear active mechanism. J AcoustSoc Am 106:2761–2778.CrossRefGoogle Scholar
  56. Müller J, Janssen T (2004) Similarity in loudness anddistortion product otoacoustic emission input/output functions:implications for an objective hearing aid adjustment. J Acoust SocAm 115:3081–3091.CrossRefGoogle Scholar
  57. Neely ST, Gorga MP, Dorn PA (2003) Cochlear compression estimatesfrom measurements of distortion-product otoacoustic emissions. JAcoust Soc Am 114:1499–1507.CrossRefGoogle Scholar
  58. Nelson DA, Bilger RC (1974) Pure-tone octave masking innormal-hearing listeners. J Speech Hear Res 17:223–251.PubMedGoogle Scholar
  59. Nelson DA, Schroder AC (2004) Peripheral compression as a functionof stimulus level and frequency region in normal-hearinglisteners. J Acoust Soc Am 115:2221–2233.PubMedCrossRefGoogle Scholar
  60. Nelson DA, Schroder AC, Wojtczak M (2001) A new procedure formeasuring peripheral compression in normal-hearing andhearing-impaired listeners. J Acoust Soc Am 110:2045–2064.PubMedCrossRefGoogle Scholar
  61. Neumann J, Uppenkamp S, Kollmeier B (1997) Relations betweennotched-noise suppressed TEOAE and the psychoacoustical criticalbandwidth. J Acoust Soc Am 101:2778–2788.PubMedCrossRefGoogle Scholar
  62. Oxenham AJ, Plack CJ (1997) A behavioral measure ofbasilar-membrane nonlinearity in listeners with normal andimpaired hearing. J Acoust Soc Am 101:3666–3675.PubMedCrossRefGoogle Scholar
  63. Oxenham AJ, Plack CJ (1998) Suppression and the upward spread ofmasking. J Acoust Soc Am 104:3500–3510.PubMedCrossRefGoogle Scholar
  64. Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning atlow levels using forward and simultaneous masking. J Assoc ResOtolaryngol 4:541–554.CrossRefGoogle Scholar
  65. Patterson RD (1976) Auditory filter shapes derived with noisestimuli. J Acoust Soc Am 59:640–654.PubMedCrossRefGoogle Scholar
  66. Pfeiffer RR, Kim DO (1975) Cochlear nerve fiber responses:distribution along the cochlear partition. J Acoust Soc Am 58:867–869.PubMedCrossRefGoogle Scholar
  67. Pienkowski M, Kunov H (2001) Suppression of distortion productotoacoustic emissions and hearing threshold. J Acoust Soc Am 109:1496–1502.PubMedCrossRefGoogle Scholar
  68. Plack CJ, Drga V (2003) Psychophysical evidence for auditorycompression at low characteristic frequencies. J Acoust Soc Am 113:1574–1586.PubMedCrossRefGoogle Scholar
  69. Rhode WS, Recio A (2000) Study of mechanical motions in the basalregion of the chinchilla cochlea. J Acoust Soc Am 107:3317–3332.PubMedCrossRefGoogle Scholar
  70. Robles L, Ruggero MA (2001) Mechanics of the mammilian cochlea. Physiol Rev 81:1305–1352PubMedGoogle Scholar
  71. Rosengard PS, Oxenham AJ, Braida LD (2005) Comparing differentestimates of cochlear compression in listeners with normal andimpaired hearing. J Acoust Soc Am 117:3028–3041.PubMedCrossRefGoogle Scholar
  72. Ruggero MA, Rich NC (1991) Furosemide alters organ of cortimechanics: evidence for feedback of outer hair cells upon thebasilar membrane. J Neurosci 11:1057–1067.PubMedGoogle Scholar
  73. Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in thebasilar membrane of the cochlea: mechanical basis ofauditory-nerve rate suppression. J Neurophysiol 68:1087–1099.PubMedGoogle Scholar
  74. Russell AF (1992) Heritability of spontaneous otoacousticemissions. Ph.D. thesis, University of Illinois.Google Scholar
  75. Sachs MB, Abbas PJ (1974) Rate versus level functions forauditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847.PubMedCrossRefGoogle Scholar
  76. Schairer KS, Fitzpatrick D, Keefe DH (2003) Input-output functionsfor stimulus-frequency otoacoustic emissions in normal-hearingadult ears. J Acoust Soc Am 114:944–966.PubMedCrossRefGoogle Scholar
  77. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilarmembrane motion in the guinea pig using the Mossbauer technique. JAcoust Soc Am 72:131–141.CrossRefGoogle Scholar
  78. Shailer MJ, Moore BCJ, Glasberg BR, Watson N, Harris S (1990) Auditory filter shapes at 8 and 10 kHz. J Acoust Soc Am 88:141–148.PubMedCrossRefGoogle Scholar
  79. Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate onshape, electromotility and membrane characteristics of isolatedouter hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718.PubMedGoogle Scholar
  80. Shera CA (2003) Mammalian spontaneous otoacoustic emissions areamplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.PubMedCrossRefGoogle Scholar
  81. Shera CA (2004) Mechanisms of mammalian otoacoustic emission andtheir implications for the clinical utility of otoacousticemissions. Ear Hear 25:86–97.PubMedCrossRefGoogle Scholar
  82. Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise bytwo fundamentally different mechanisms: a taxonomy for mammalianOAEs. J Acoust Soc Am 105:782–798.PubMedCrossRefGoogle Scholar
  83. Shera CA, Guinan JJ (2003) Stimulus-frequency-emission groupdelay: a test of coherent reflection filtering and a window oncochlear tuning. J Acoust Soc Am 113:2762–2772.PubMedCrossRefGoogle Scholar
  84. Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of humancochlear tuning from otoacoustic and behavioral measurements. ProcNatl Acad Sci USA 99:3318–3323.CrossRefGoogle Scholar
  85. Smurzynski J, Probst R (1998) The influence of disappearing andreappearing spontaneous otoacoustic emissions on one subject’sthreshold microstructure. Hear Res 115:197–205.PubMedCrossRefGoogle Scholar
  86. Stelmachowicz PG, Lewis DE, Larson LL, Jesteadt W (1987) Growth ofmasking as a measure of response growth in hearing-impairedlisteners. J Acoust Soc Am 81:1881–1887.PubMedCrossRefGoogle Scholar
  87. Stover LJ, Neely ST, Gorga MP (1999) Cochlear generation ofintermodulation distortion revealed by DPOAE frequency functionsin normal and impaired ears. J Acoust Soc Am 106:2669–2678.PubMedCrossRefGoogle Scholar
  88. Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. HearRes 46:113–145.Google Scholar
  89. Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New off-linemethod for detecting spontaneous otoacoustic emission in humansubjects. Hear Res 71:170–182.PubMedCrossRefGoogle Scholar
  90. Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modelingotoacoustic emission and hearing threshold fine structures. JAcoust Soc Am 104:1517–1543.CrossRefGoogle Scholar
  91. Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimentalconfirmation of the two-source interference model for the finestructure of distortion product otoacoustic emissions. J AcoustSoc Am 105:275–292.CrossRefGoogle Scholar
  92. Tsuji J, Liberman MC (1997) Intracellular labeling of auditorynerve fibers in guinea pig: central and peripheral projections. JComp Neurol 381:188–202.CrossRefGoogle Scholar
  93. van der Heijden M, Kohlrausch A (1995) The role of envelopefluctuations in spectral masking. J Acoust Soc Am 97:1800–1807.PubMedCrossRefGoogle Scholar
  94. Vogten LLM (1978) Low-level pure-tone masking: a comparison of“tuning curves” obtained with simultaneous and forward masking. J Acoust Soc Am 63:1520–1527.PubMedCrossRefGoogle Scholar
  95. Wegel RL, Lane CE (1924) The auditory masking of one pure tone byanother and its probable relation to the dynamics of the innerear. Phy Rev 23:266–285.CrossRefGoogle Scholar
  96. Widin GP, Viemeister NF (1979) Intensive and temporal effects inpure-tone forward masking. J Acoust Soc Am 66:388–395.CrossRefGoogle Scholar
  97. Zettner EM, Folsom RC (2003) Transient emission suppression tuningcurve attributes in relation to psychoacoustic threshold. J AcoustSoc Am 113:2031–2041.CrossRefGoogle Scholar
  98. Zweig G, Shera CA (1995) The origin of periodicity in the spectrumof evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047.PubMedCrossRefGoogle Scholar
  99. Zwicker E (1986) Spontaneous oto-acoustic emissions, threshold inquiet, and just noticeable amplitude at low levels. In: Moore BCJ,Patterson RD (eds) Auditory Frequency Selectivity. New York:Plenum Press, pp. 49–59.Google Scholar
  100. Zwicker E (1989) Otoacoustic emissions and cochlear travelingwaves. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms Structure,Function, and Models. New York: Plenum Press, pp. 359–366.Google Scholar
  101. Zwicker E, Peisl W (1990) Cochlear preprocessing in analog models,in digital models and in human inner ear. Hear Res 44:209–216.PubMedCrossRefGoogle Scholar
  102. Zwicker E, Schloth E (1984) Interrelation of differentoto-acoustic emissions. J Acoust Soc Am 75:1148–1154.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tiffany A. Johnson
  • Michael P. Gorga
  • Stephen T. Neely
  • Andrew J. Oxenham
  • Christopher A. Shera

There are no affiliations available

Personalised recommendations