Cochlear Models Incorporating Active Processes

  • Stephen T. Neely
  • Duck O. Kim
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 30)


Hair Cell Basilar Membrane Otoacoustic Emission Hair Bundle Cochlear Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen JB (1980) Cochlear micromechanics—a physical model of transduction. J Acoust Soc Am 1980 68:1660–1670.CrossRefGoogle Scholar
  2. Allen JB, Neely ST (1992) Micromechanical models of the cochlea. Physics Today July:40–47.Google Scholar
  3. Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hear Res 22:31–36.PubMedCrossRefGoogle Scholar
  4. Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A:173–178.Google Scholar
  5. Brownell WE, Bader CR, Bertrand D, Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.PubMedCrossRefGoogle Scholar
  6. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.PubMedCrossRefGoogle Scholar
  7. Dallos P, Fakler B. (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111.PubMedCrossRefGoogle Scholar
  8. Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.PubMedCrossRefGoogle Scholar
  9. de Boer E (1983a) No sharpening? A challenge for cochlear mechanics. J Acoust Soc Am 73:567–573.CrossRefGoogle Scholar
  10. de Boer E (1983b) On active and passive cochlear models—toward a generalized analysis. J Acoust Soc Am 73:574–576.CrossRefGoogle Scholar
  11. de Boer E (1995a) The inverse problem solved for a three-dimensional model of the cochlea. I. Analysis. J Acoust Soc Am 98:896–903.CrossRefGoogle Scholar
  12. de Boer E (1995b) The inverse problem solved for a three-dimensional model of the cochlea. II. Application to experimental data sets. J Acoust Soc Am 98:904–910.CrossRefGoogle Scholar
  13. Dimitriadis EK, Chadwick RS (1999) Solution of the inverse problem for a linear cochlear model: a tonotopic cochlear amplifier. J Acoust Soc Am 106:1880–1892.PubMedCrossRefGoogle Scholar
  14. Duifhuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1986) Modelling the cochlear partition with coupled Van der Pol oscillators. In: Allen JB, Hall JL, Hubbard AE, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 290–297.Google Scholar
  15. Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 19:1218–1221.CrossRefGoogle Scholar
  16. Fukazawa T, Tanaka Y (1996) Spontaneous otoacoustic emissions in an active feed-forward model of the cochlea. Hear Res 95:135–143.PubMedCrossRefGoogle Scholar
  17. Geisler CD (1991) A cochlear model using feedback from motile outer hair cells. Hear Res 54:105–117.PubMedCrossRefGoogle Scholar
  18. Geisler CD, Sang C (1995) A cochlear model using feed-forward outer-hair-cell forces. Hear Res 86:132–46.PubMedCrossRefGoogle Scholar
  19. Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938.PubMedCrossRefGoogle Scholar
  20. Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond B 135:492–498.CrossRefGoogle Scholar
  21. Guinan JJ (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62.PubMedGoogle Scholar
  22. Kemp DT (1978) Stimulated acoustic emission from the human auditory system. J Acoust Soc Am 64:1386–1391.PubMedCrossRefGoogle Scholar
  23. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433: 880–883.PubMedCrossRefGoogle Scholar
  24. Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press, pp. 1–154.Google Scholar
  25. Kim DO, Siegel JH, Molnar CE (1979) Cochlear nonlinear phenomena in two-tone responses. Scand Audiol (Suppl) 9:63–81.Google Scholar
  26. Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317.PubMedCrossRefGoogle Scholar
  27. Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22:105–114.PubMedCrossRefGoogle Scholar
  28. Kim DO, Molnar, CE, Matthews, JW (1980a) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.CrossRefGoogle Scholar
  29. Kim DO, Neely ST, Molnar, CE, Matthews, JW (1980b) An active cochlear model with negative damping in the partition: comparison with Rhode’s ante- and post-mortem observations. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft: Delft University Press, pp. 7–14.Google Scholar
  30. Kim DO, Dorn PA, Neely ST, Gorga (2001) Adaptation of distortion product otoacoustic emission in humans. J Assoc Res Otolar 2:31–40.Google Scholar
  31. Kim DO, Yang XM, Neely ST (2003) Effects of the medial olivocochlear reflex on cochlear mechanics: experimental and modeling studies of DPOAE. In: Gummer AW (ed) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 506–516.CrossRefGoogle Scholar
  32. Liberman MC, Puria S, Guinan JJ (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584.PubMedCrossRefGoogle Scholar
  33. Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212.PubMedCrossRefGoogle Scholar
  34. Martin P, Mehta AD, Hudspeth AJ (2000) Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:12026–12031.PubMedCrossRefGoogle Scholar
  35. Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.PubMedCrossRefGoogle Scholar
  36. Mountain DC, Hubbard AE, McMullen TA (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. The Hague: Martinus Nijhoff, pp. 119–126.Google Scholar
  37. Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea gig cochlea. J Neurosci 16:325–332.PubMedGoogle Scholar
  38. Nakajima HH, Hubbard AE, Mountain DC (2000) Effects of acoustic trauma on acoustic enhancement of electrically evoked otoacoustic emissions. J Acoust Soc Am 107:2603–2614.PubMedCrossRefGoogle Scholar
  39. Neely ST (1980) Backward solution of a two-dimensional cochlear model. J Acoust Soc Am 67:S75.CrossRefGoogle Scholar
  40. Neely ST, Allen JB (1997) Relation between the rate of growth of loudness and the intensity DL. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. Mahwah, NJ: Lawrence Erlbaum, pp. 213–222.Google Scholar
  41. Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130.PubMedCrossRefGoogle Scholar
  42. Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480.PubMedCrossRefGoogle Scholar
  43. Neely ST, Stover LJ (1993) Otoacoustic emissions from a nonlinear, active model of cochlear mechanics. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 64–71.Google Scholar
  44. Neely ST, Gorga MP, Dorn PA (2000) Distortion product and loudness growth in an active, nonlinear model of cochlear mechanics. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 237–243.Google Scholar
  45. Pfeiffer RR, Kim DO (1975) Cochlear nerve fiber responses: distribution along the cochlear partition. J Acoust Soc Am 58:867–869.PubMedCrossRefGoogle Scholar
  46. Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.PubMedCrossRefGoogle Scholar
  47. Rhode WS (1973) An investigation of post-mortem cochlear mechanics using the Mössbauer effect. In: Möller AR (ed) Basic Mechanisms in Hearing. New York: Academic Press, pp. 49–67.Google Scholar
  48. Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176.PubMedCrossRefGoogle Scholar
  49. Rhode WS, Robles L (1974) Evidence from Mössbauer experiments for nonlinear vibration in the cochlea. J Acoust Soc Am 55:588–596.PubMedCrossRefGoogle Scholar
  50. Ricci AJ, Crawford AC, Fettiplace R (2002) Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci 22:44–52.PubMedGoogle Scholar
  51. Robertson D (1974) Cochlear neurons: frequency analysis altered by perilymph removal. Science 186:153–155.PubMedCrossRefGoogle Scholar
  52. Robertson D, Johnstone BM (1979) Aberrant tonotopic organization in the inner ear damaged by kanamycin. J Acoust Soc Am 66:466–469.PubMedCrossRefGoogle Scholar
  53. Robertson D, Manley GA (1974) Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J Comp Physiol 91:363–375.CrossRefGoogle Scholar
  54. Ruggero MA, Rich NC, Recio A, Narayan, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.Google Scholar
  55. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72:131–141.PubMedCrossRefGoogle Scholar
  56. Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.PubMedCrossRefGoogle Scholar
  57. Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798.PubMedCrossRefGoogle Scholar
  58. Siegel JH, Kim DO (1982) Efferent control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182.PubMedCrossRefGoogle Scholar
  59. Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products f2-f1 and 2f1-f2. J Neurophysiol 47:303–328.PubMedGoogle Scholar
  60. van Dijk P, Wit HP (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 88:1779–1793.PubMedCrossRefGoogle Scholar
  61. von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.Google Scholar
  62. Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neuroscience 18:3859–3869.Google Scholar
  63. Wilson JP, Johnstone JR (1975) Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. J Acoust Soc Am 57:705–723.PubMedCrossRefGoogle Scholar
  64. Wit HP (1990) Spontaneous otoacoustic emission generators behave like coupled oscillators. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 259–268.Google Scholar
  65. Yates GK (1990) Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hear Res 50:145–162.PubMedCrossRefGoogle Scholar
  66. Yates GK, Kirk DL (1998) Cochlear electrically evoked emissions modulated by mechanical transduction channels. J Neurosci 18:1996–2003.PubMedGoogle Scholar
  67. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 11:149–55.CrossRefGoogle Scholar
  68. Zweig (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229–1254.Google Scholar
  69. Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047.PubMedCrossRefGoogle Scholar
  70. Zwicker E (1986) “Otoacoustic” emissions in a nonlinear cochlear hardware model with feedback. J Acoust Soc Am 80:154–162.PubMedCrossRefGoogle Scholar
  71. Zwislocki JJ, Kletsky EJ (1979) Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science 204:639–641.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen T. Neely
  • Duck O. Kim

There are no affiliations available

Personalised recommendations