Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB (1980) Cochlear micromechanics—a physical model of transduction. J Acoust Soc Am 1980 68:1660–1670.

    Article  CAS  Google Scholar 

  • Allen JB, Neely ST (1992) Micromechanical models of the cochlea. Physics Today July:40–47.

    Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hear Res 22:31–36.

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A:173–178.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, Fakler B. (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111.

    Article  PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    Article  PubMed  CAS  Google Scholar 

  • de Boer E (1983a) No sharpening? A challenge for cochlear mechanics. J Acoust Soc Am 73:567–573.

    Article  Google Scholar 

  • de Boer E (1983b) On active and passive cochlear models—toward a generalized analysis. J Acoust Soc Am 73:574–576.

    Article  Google Scholar 

  • de Boer E (1995a) The inverse problem solved for a three-dimensional model of the cochlea. I. Analysis. J Acoust Soc Am 98:896–903.

    Article  Google Scholar 

  • de Boer E (1995b) The inverse problem solved for a three-dimensional model of the cochlea. II. Application to experimental data sets. J Acoust Soc Am 98:904–910.

    Article  Google Scholar 

  • Dimitriadis EK, Chadwick RS (1999) Solution of the inverse problem for a linear cochlear model: a tonotopic cochlear amplifier. J Acoust Soc Am 106:1880–1892.

    Article  PubMed  CAS  Google Scholar 

  • Duifhuis H, Hoogstraten HW, van Netten SM, Diependaal RJ, Bialek W (1986) Modelling the cochlear partition with coupled Van der Pol oscillators. In: Allen JB, Hall JL, Hubbard AE, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 290–297.

    Google Scholar 

  • Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 19:1218–1221.

    Article  Google Scholar 

  • Fukazawa T, Tanaka Y (1996) Spontaneous otoacoustic emissions in an active feed-forward model of the cochlea. Hear Res 95:135–143.

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD (1991) A cochlear model using feedback from motile outer hair cells. Hear Res 54:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD, Sang C (1995) A cochlear model using feed-forward outer-hair-cell forces. Hear Res 86:132–46.

    Article  PubMed  CAS  Google Scholar 

  • Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938.

    Article  PubMed  Google Scholar 

  • Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond B 135:492–498.

    Article  Google Scholar 

  • Guinan JJ (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62.

    PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emission from the human auditory system. J Acoust Soc Am 64:1386–1391.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433: 880–883.

    Article  PubMed  CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press, pp. 1–154.

    Google Scholar 

  • Kim DO, Siegel JH, Molnar CE (1979) Cochlear nonlinear phenomena in two-tone responses. Scand Audiol (Suppl) 9:63–81.

    Google Scholar 

  • Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317.

    Article  PubMed  CAS  Google Scholar 

  • Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22:105–114.

    Article  PubMed  CAS  Google Scholar 

  • Kim DO, Molnar, CE, Matthews, JW (1980a) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    Article  CAS  Google Scholar 

  • Kim DO, Neely ST, Molnar, CE, Matthews, JW (1980b) An active cochlear model with negative damping in the partition: comparison with Rhode’s ante- and post-mortem observations. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft: Delft University Press, pp. 7–14.

    Google Scholar 

  • Kim DO, Dorn PA, Neely ST, Gorga (2001) Adaptation of distortion product otoacoustic emission in humans. J Assoc Res Otolar 2:31–40.

    Google Scholar 

  • Kim DO, Yang XM, Neely ST (2003) Effects of the medial olivocochlear reflex on cochlear mechanics: experimental and modeling studies of DPOAE. In: Gummer AW (ed) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 506–516.

    Chapter  Google Scholar 

  • Liberman MC, Puria S, Guinan JJ (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584.

    Article  PubMed  CAS  Google Scholar 

  • Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Mehta AD, Hudspeth AJ (2000) Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc Natl Acad Sci USA 97:12026–12031.

    Article  PubMed  CAS  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    Article  PubMed  CAS  Google Scholar 

  • Mountain DC, Hubbard AE, McMullen TA (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. The Hague: Martinus Nijhoff, pp. 119–126.

    Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea gig cochlea. J Neurosci 16:325–332.

    PubMed  CAS  Google Scholar 

  • Nakajima HH, Hubbard AE, Mountain DC (2000) Effects of acoustic trauma on acoustic enhancement of electrically evoked otoacoustic emissions. J Acoust Soc Am 107:2603–2614.

    Article  PubMed  CAS  Google Scholar 

  • Neely ST (1980) Backward solution of a two-dimensional cochlear model. J Acoust Soc Am 67:S75.

    Article  Google Scholar 

  • Neely ST, Allen JB (1997) Relation between the rate of growth of loudness and the intensity DL. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. Mahwah, NJ: Lawrence Erlbaum, pp. 213–222.

    Google Scholar 

  • Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130.

    Article  PubMed  CAS  Google Scholar 

  • Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480.

    Article  PubMed  CAS  Google Scholar 

  • Neely ST, Stover LJ (1993) Otoacoustic emissions from a nonlinear, active model of cochlear mechanics. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 64–71.

    Google Scholar 

  • Neely ST, Gorga MP, Dorn PA (2000) Distortion product and loudness growth in an active, nonlinear model of cochlear mechanics. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 237–243.

    Google Scholar 

  • Pfeiffer RR, Kim DO (1975) Cochlear nerve fiber responses: distribution along the cochlear partition. J Acoust Soc Am 58:867–869.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    Article  PubMed  Google Scholar 

  • Rhode WS (1973) An investigation of post-mortem cochlear mechanics using the Mössbauer effect. In: Möller AR (ed) Basic Mechanisms in Hearing. New York: Academic Press, pp. 49–67.

    Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Robles L (1974) Evidence from Mössbauer experiments for nonlinear vibration in the cochlea. J Acoust Soc Am 55:588–596.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2002) Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci 22:44–52.

    PubMed  CAS  Google Scholar 

  • Robertson D (1974) Cochlear neurons: frequency analysis altered by perilymph removal. Science 186:153–155.

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1979) Aberrant tonotopic organization in the inner ear damaged by kanamycin. J Acoust Soc Am 66:466–469.

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Manley GA (1974) Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J Comp Physiol 91:363–375.

    Article  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.

    Article  PubMed  Google Scholar 

  • Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798.

    Article  PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products f2-f1 and 2f1-f2. J Neurophysiol 47:303–328.

    PubMed  CAS  Google Scholar 

  • van Dijk P, Wit HP (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 88:1779–1793.

    Article  PubMed  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neuroscience 18:3859–3869.

    CAS  Google Scholar 

  • Wilson JP, Johnstone JR (1975) Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. J Acoust Soc Am 57:705–723.

    Article  PubMed  CAS  Google Scholar 

  • Wit HP (1990) Spontaneous otoacoustic emission generators behave like coupled oscillators. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 259–268.

    Google Scholar 

  • Yates GK (1990) Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hear Res 50:145–162.

    Article  PubMed  CAS  Google Scholar 

  • Yates GK, Kirk DL (1998) Cochlear electrically evoked emissions modulated by mechanical transduction channels. J Neurosci 18:1996–2003.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 11:149–55.

    Article  Google Scholar 

  • Zweig (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229–1254.

    Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1986) “Otoacoustic” emissions in a nonlinear cochlear hardware model with feedback. J Acoust Soc Am 80:154–162.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Kletsky EJ (1979) Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science 204:639–641.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neely, S.T., Kim, D.O. (2008). Cochlear Models Incorporating Active Processes. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_11

Download citation

Publish with us

Policies and ethics