Advertisement

Drug Courts pp 34-50 | Cite as

The Biologic Basis of Drug and Alcohol Addiction

  • Olga A. Katz
  • Nikita B. Katz
  • Steven Mandel

Abstract

Many practitioners and researchers in the field have come to view drug addiction as a disease of the brain that is caused by both genetic and environmental factors and that may respond to pharmacologic and psychological therapies. The phenomenon of drug addiction is, however, far broader than the combination of genetics and neuropsychopharmacology. There are numerous social and political dimensions that add to the complexity of addiction that must also be considered.

Keywords

Dopaminergic Neuron Nucleus Accumbens Ventral Tegmental Area Bulimia Nervosa Nicotinic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solomon RL, Corbit JD. An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychol Rev 1974;81:119–145.PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience? Brain Res Rev 1998;28:309–369.PubMedCrossRefGoogle Scholar
  3. 3.
    Robinson TE, Berridge KC. Addiction. Annu Rev Psychol 2003;54:25–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Berridge KC, Robinson TE. Parsing reward. Trends Neurosci 2003;26:507–513.PubMedCrossRefGoogle Scholar
  5. 5.
    Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science 2005;307:1642–1645.PubMedCrossRefGoogle Scholar
  6. 6.
    Kelley AE. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002;76:365–377.PubMedCrossRefGoogle Scholar
  7. 7.
    Alcohol, the brain, and behavior. Mechanisms of addiction. Alcohol Res Health 2000;24(1):12–15.Google Scholar
  8. 8.
    Brauer LH, Cramblett MJ, Paxton DA, Rose JE. Haloperidol reduces smoking of both nicotine-containing and denicotinized cigarettes. Psychopharmacology (Berl) 2001;159:31–37.CrossRefGoogle Scholar
  9. 9.
    Hart CL. Methamphetamine self-administration by humans. Psychopharmacology (Berl) 2001;157:75–81.CrossRefGoogle Scholar
  10. 10.
    Wachtel SR. The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend 2002;68:23–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Leyton M. Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/11C raclopride study in healthy men. Neuropsychopharmacology 2002;27:1027–1035.PubMedCrossRefGoogle Scholar
  12. 12.
    Volkow ND. Nonhedonic food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 1002;44:175–180.CrossRefGoogle Scholar
  13. 13.
    Gruber AJ, Pope HG, Hudson JI, Yurgelun-Todd D. Attributes of long-term heavy cannabis users: a case-control study. Psychol Med 2003;33:1415–1422.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffman AF, Riegel AC, Lupica CR. Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur J Neurosci 2003;18:524–534.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer JS, Ali SF. Serotonergic effects of MDMA (ecstasy) in the developing brain. Ann NY Acad Sci 2002;965:373–380.PubMedCrossRefGoogle Scholar
  16. 16.
    Meyer JS, Grande M, Johnson K, Ali SF. Neurotoxic effects of MDMA (ecstasy). Int J Dev Neurosci 2004;22:261–271.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Brien CP. Benzodiazepine use, abuse and dependence. J Clin Psychiatry 2005;66(Suppl 2):28–33.PubMedGoogle Scholar
  18. 18.
    Zawertailo LA, Busto UE, Kaplan HL, Greenblatt DJ, Sellers EM. Comparative abuse liability and pharmacological effects of meprobamate, triazolam, and butabarbital. J Clin Psychopharmacol 2003;23(3):269–280.PubMedCrossRefGoogle Scholar
  19. 19.
    Schuckit MA, Smith TL. An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 1996;53:202–210.PubMedGoogle Scholar
  20. 20.
    Goldman D, Bergen A. General and specific inheritance of substance abuse and alcoholism. Arch Gen Psychiatry 1998;55(11):964–965.PubMedCrossRefGoogle Scholar
  21. 21.
    Bierut LJ, Dinwiddie SH, Begleiter H. Familial transmission of substance dependence: alcohol, marijuana, cocaine and habitual smoking. Arch Gen Psychiatry 1998;55:982–988.PubMedCrossRefGoogle Scholar
  22. 22.
    Pollock VE. Meta-analysis of subjective sensitivity to alcohol in sons of alcoholics. Am J Psychiatry 1992;149:1534–1538.PubMedGoogle Scholar
  23. 23.
    Monteiro MG, Klein JL, Schuckit MA. High levels of sensitivity to alcohol in young adult Jewish men: a pilot study. J Stud Alcohol 1991;52:474–469.Google Scholar
  24. 24.
    Ehlers CL, Garcia-Andrade C, Wall TL. Electroencephalographic responses to alcohol challenge in Native American Mission Indians. Biol Psychiatry 1999;45:776–787.PubMedCrossRefGoogle Scholar
  25. 25.
    Wall TL, Johnson ML, Horn SM. Evaluation of the self-rating form of the effects of alcohol in Asian Americans with aldehyde dehydrogenase polymorphisms. J Stud Alcohol 1999;60:784–789.PubMedGoogle Scholar
  26. 26.
    Schuckit MA, Mazzanti C, Smith TL. Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABAA6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study. Biol Psychiatry 1999;45:647–651.PubMedCrossRefGoogle Scholar
  27. 27.
    Schuckit MA, Edenberg HJ, Kalmijn J. A genome-wide search for genes that relate to a low level of response to alcohol. Alcohol Clin Exp Res 2001;25:323–329.PubMedCrossRefGoogle Scholar
  28. 28.
    Ehlers CL, Schuckit MA. Evaluation of EEG alpha activity in sons of alcoholics. Neuropsychopharmacology 1991;4:199–205.PubMedGoogle Scholar
  29. 29.
    Enoch MA, White KV, Harris CR. Association of low voltage alpha EEG with a subtype of alcohol use disorders. Alcohol Clin Exp Res 1999;23:1312–1319.PubMedGoogle Scholar
  30. 30.
    Pollock VE, Volavka J, Goodwin DW. The EEG after alcohol administration in men at risk for alcoholism. Arch Gen Psychiatry 1983;40:857–681.PubMedGoogle Scholar
  31. 31.
    Bauer LO, Hesselbrock VM. EEG, autonomic and subjective correlates of the risk for alcoholism. J Stud Alcohol 1993;54:577–589.PubMedGoogle Scholar
  32. 32.
    van Beijsterveldt CEM, Boomsma DI. Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Hum Genet 1994;94:319–330.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Connor S, Sorbel J, Morzorati S. A twin study of genetic influences on the acute adaptation of the EEG to alcohol. Alcohol Clin Exp Res 1999;23:494–501.PubMedGoogle Scholar
  34. 34.
    Ehlers CL, Li T-K, Lumeng L. Neuropeptide Y (NPY) levels in ethanol-naive alcohol preferring and non-preferring rats and in Wistar rats following ethanol exposure. Alcohol Clin Exp Res 1998;22:1778–1782.PubMedGoogle Scholar
  35. 35.
    Hwang BH, Zhang J-K, Ehlers CL. Innate differences of neuropeptide Y (NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats with high and low alcohol preference. Alcohol Clin Exp Res 1999;23:1023–1030.PubMedGoogle Scholar
  36. 36.
    Thiele TE, Marsh DJ, Ste Marie L. Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 1998;396:366–369.PubMedCrossRefGoogle Scholar
  37. 37.
    Wong DT, Reid LR, Li T-K. Greater abundance of serotonin1A receptor in some brain areas of alcohol-preferring (P) rats compared to nonpreferring (NP) rats. Pharmacol Biochem Behav 1993;46:173–177.PubMedCrossRefGoogle Scholar
  38. 38.
    Crabbe JC, Phillips TJ, Feller DJ. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 1996;14:98–101.PubMedCrossRefGoogle Scholar
  39. 39.
    Ernouf D, Compagnon P, Lothion P. Platelet 3H 5-HT uptake in descendants from alcoholic patients: a potential risk factor for alcohol dependence. Life Sci 1993;52:989–995.PubMedCrossRefGoogle Scholar
  40. 40.
    Kreek MJ. Cocaine, dopamine and the endogenous opioid system. J Addict Dis 1996;15(4):73–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Merikangas KR, Stolar M, Stevens DE. Familial transmission of substance use disorders. Arch Gen Psychiatry 1998;55:973–979.PubMedCrossRefGoogle Scholar
  42. 42.
    Harada S, Agarwal DP, Goedde HW. Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet 1982;2(8253):982–990.Google Scholar
  43. 43.
    Goldman D. Genetic transmission. In Galanter M, ed. Recent Developments in Alcoholism. Volume 11: Ten Years of Progress. New York: Plenum Press, 1993;14:231–248.Google Scholar
  44. 44.
    Thomasson HR, Beard JD, Li TK. ADH2 gene polymorphisms are determinants of alcohol pharmacokinetics. Alcohol Clin Exp Res 1995;19(6):1494–1499.PubMedCrossRefGoogle Scholar
  45. 45.
    McCarver DG, Thomasson HR, Martier SS. Alcohol dehydrogenase-2-3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther 1997;283(3):1095–1101.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Olga A. Katz
    • 1
  • Nikita B. Katz
    • 2
  • Steven Mandel
    • 1
  1. 1.Jefferson Medical College, Neurology and Neurophysiology Associates, PCPhiladelphiaUSA
  2. 2.INR/Biomed, Inc.ConcordUSA

Personalised recommendations