Skip to main content

Enzymes

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altman, P. L., & Dittmer, D. S. (Eds.). (1974). Biology data book (2nd ed). Bethesda, MD: Federation of American Societies for Experimental Biology.

    Google Scholar 

  • Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., et al. (1989). Purificationand characteristics of a novel transglutaminase derived from microorganisms. Agricultural Biological Chemistry, 53, 2613–2617.

    CAS  Google Scholar 

  • Arcus, A. C. (1959). Proteolytic enzyme of Actinidia chinesis. Biochimica et Biophysica Acta 33 242–244.

    Article  CAS  Google Scholar 

  • Ashie, I., Sorensen, T., & Nielsen, P. M. (2005) Meat tenderization with a thermolabile protease.U.S. Patent No. 6,849,284. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Ashie, I. N. A., Sorensen, T. L., & Nielsen, P. M. (2002). Effects of papain and a microbial enzymeon meat proteins and beef tenderness. Journal of Food Science 67(6), 2138–2142.

    Article  CAS  Google Scholar 

  • Balls, A. K., & Hoover, S. R. (1937). The milk-clotting action of papain. Journal of BiologicalChemistry, 121, 737&745.

    CAS  Google Scholar 

  • Beltrán-Lugo, A. I., Maeda-Martínez, A. N., Pacheco-Aguilar, R., Nolasco-Soria, H. G., & Ocaño-Higuera, V. M. (2005). Physical, textural, and microstructural properties of restructuredadductor muscles of 2 scallop species using 2 cold-binding systems. Journal of Food Science 70, E78–E84

    Article  Google Scholar 

  • Beuk, J. F., Savich, A. L., Goeser, P. A., & Hogan, J. M. (1959). Method of tenderizing meat.U.S.Patent No. 2,903,362. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Calkins, C. R., & Sullivan, G. (2007). Adding enzymes to improve meat tenderness (Beef Facts: Product Enhancement series). National Cattlemen's Beef Association. Retrieved March 5,2008, from http://www.beefresearch.org/CMDocs/BeefResearch/Adding20Enzymes%20to%20Improve%20Beef%20Tenderness.pdf

  • Carvajal-Vallejos, P. K., Campos, A., Fuentes-Prior, P., V Villalobos, E., Almeida, A. M., Barberà, E., Torné, J., % Santos, M. (2007). Purification and in vitro refolding of maize chloroplasttransglutaminase over-expressed in Escherichia coli Biotechnology Letters, 29, 1255–1262.

    CAS  Google Scholar 

  • Chung, S. I., Lewis, M. S., & Folk, J. E. (1974). Relationships of the catalytic properties of humanplasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunitstructures. Journal of Biological Chemistry, 249, 940–950.

    CAS  Google Scholar 

  • Code of Federal Regulations. (2007a). False or misleading labeling or practices generally; specific prohibitions and requirements for labels and containers. 9 C.F.R. § 317.8. Washington, DC:U.S. Government Printing Office.

    Google Scholar 

  • Code of Federal Regulations. (2007b). Antioxidants; chemical preservatives; and other additives.9 C.F.R. § 381.120.. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Code of Federal Regulations. (2007c). Use of food ingredients and sources of radiation. 9 C.F.R.§ 424.21. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Code of Federal Regulations. (2007d). Definitions and standards of identity or composition. 9 C.F.R. § 319. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Code of Federal Regulations. (2007e). Poultry products inspection regulations. 9 C.F.R. § 381. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Dransfield, E. (1994). Tenderness of meat, poultry and fish. In A. M. Pearson & T. R. Dutson(Eds.), Advances in meat research: Vol. 9. Quality attributes and their measurement in meat, poultry and fish products. (pp. 289–315). London: Blackie Academic & Professional.

    Google Scholar 

  • Englund, P. T., King, T. P., Craig, L. C., & Walti, A. (1968). Studies on ficin. I. Its isolation andcharacterization. Biochemistry 7, 163–175.

    CAS  Google Scholar 

  • Enzyme Development Corporation. (1999). .Meat tenderizing enzymes, a brief discussion. Retrieved November 8, 2007, from Enzyme Development Corporation Web Site: http://www.enzymedevelopment.com/html/applications/protein.html#meat

  • Enzyme Technical Association. (2008). Safety and position papers. Retrieved March 5, 2008,from http://www.enzymetechnicalassoc.org/working.html

  • Farouk, M. M., Hall, W. K., Wieliczko, K. J., & Swan, J. E. (2005). Processing time and bindereffect on the quality of restructured rolls from hot-boned beef. Journal of Muscle Foods 16,318–329.

    Article  Google Scholar 

  • Farouk, M. M., Zhang, S. X., & Cummings, T. (2005). Effect of muscle fiber/fiber-bundle alignment on physical and sensory properties of restructured beef steaks. Journal of Muscle Foods16, 256–273.

    Article  Google Scholar 

  • Fawcett, S. L., & McDowell, D. A. (1986). Assessment of the potential of commercially availableenzymes in meat tenderization. Foodservice Research International, 4, 133–142.

    Article  Google Scholar 

  • Fogle, D. R., Plimpton, R. F., Ockerman, H. W., Jarenback, L., & Persson, T. (1982). Tenderizationof beef: effect of enzyme, enzyme level, and cooking method. Journal of Food Science, 47,1113–1118.

    Article  CAS  Google Scholar 

  • Food and Drug Administration. (1999, April 23). Carbohydrase and protease enzyme preparationsderived from Bacillus subtilis or Bacillus amyloliquefaciens : Affirmation of GRAS Status asdirect food ingredients. 64 Fed. Reg. 19887–19895 (to be codified at 21 C.F.R. pt. 184).

    Google Scholar 

  • Icekson, I., & Apelbaum, A. (1987). Evidence for transglutaminase activity in plant tissue. PlantPhysiology., 84, 972–974.

    CAS  Google Scholar 

  • Ishida, R., & Nakagoshi, H. (2007). Method for producing transglutaminase composition. U.S. Patent Application No. 20070202213.. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Jones, I. K., & Glazer, A. N. (1970). Comparative studies on four sulfhydryl endopeptidases(“ficins”) of ficus glabrata latex. Journal of Biological Chemistry, 245, 2765–2772.

    CAS  Google Scholar 

  • Kang, C. K., & Rice, E. E. (1970). Degradation of various meat fractions by tenderizing enzymes.Journal of Food Science, 35, 536–565.

    Article  Google Scholar 

  • Kim, S.-H., Carpenter, J. A., Lanier, T. C., & Wicker, L. (1993). Polymerization of beef actomy-osin induced by transglutaminase. Journal of Food Science., 58, 473–474.

    Article  CAS  Google Scholar 

  • Kumazawa, Y., Nakanishi, K., Yasueda, H., & Motoki, M. (1996). Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Science., 62, 959–964.

    CAS  Google Scholar 

  • Kumazawa, Y., Numazawa, T., Seguro, K., & Motoki, M. (1995). Suppression of surimi gel setting by transglutaminase inhibitors. Journal of Food Science, 60, 715–717.

    Article  CAS  Google Scholar 

  • Kumazawa, Y., Sakamoto, H., Kawajiri, H., Seguro, K., & Motoki, M. (1996). Determination ofγ-(-glutamyl)lysine in several fish eggs and muscle proteins. Fisheries Science, 62, 331–332.

    CAS  Google Scholar 

  • Kumazawa, Y., Sano, K., Seguro, K., Yasueda, H., Nio, N., & Motoki, M. (1997). Purification and characterization of transglutaminase from Japanese oyster (Crassostrea gigas.). .Journal of Agricultural and Food Chemistry., 45, 604–610.

    Article  CAS  Google Scholar 

  • Kuraishi, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C. & Soeda, T. (1997). Production ofrestructured meat using microbial transglutaminase without salt or cooking. Journal of Food cience, 62, 488–490.

    Article  CAS  Google Scholar 

  • Kuraishi, C., Yamazaki, K., Susa, K. (1997). Transglutaminase: Its utilization in the food industry.Food Reviews International,, 17, 221–246.

    Article  Google Scholar 

  • Kurth, L, & Rogers, P. J., (1984). Transglutaminase catalyzed cross-linking of myosin to soya protein, casein, and gluten. Journal of Food Science, 49, 573–576.

    Article  CAS  Google Scholar 

  • Lee, H. G., & Lanier, T. C. (1995). The role of covalent cross-linking in the texturizing of muscle protein sols. Journal of Muscle Foods, 6, 125–138.

    Article  Google Scholar 

  • Lee, Y. B., Sehnert, D. J., & Ashmore, C. R. (1986). Tenderization of meat with ginger rhizome protease. Journal of Food Science, 51, 1558–1559.

    Article  CAS  Google Scholar 

  • Lewis, D. A., & Luh, B. S., (1988a). Application of actinidin from kiwifruit to meat tenderizationand characterization of beef muscle protein hydrolysis. Journal of Food Biochemistry, 12,147–158.

    Article  CAS  Google Scholar 

  • Lewis, D. A., & Luh, B. S. (1988b). Development and distribution of actinidin in kiwifruit(Actinidia chinesis) and its partial characterization. Journal of Food Biochemistry, 12,109–116.

    Article  CAS  Google Scholar 

  • Lilley, G. R., Skill, J., Griffin, M., & Bonner, P. L. R. (1998). Detection of Ca2+-dependent trans-glutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants.Plant Physiology, 117, 1115–1123.

    Article  CAS  Google Scholar 

  • Macrae, R., Robinson, R. K., & Sadler, M. J. (1993). Enzymes. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopaedia of food science, food technology, and nutrition (pp. 1636–1637). London: Academic Press Inc.

    Google Scholar 

  • Margosiak, S. A., Dharma, A., Bruce-Carver, M. R., Gonzales, A. P., Louie, D., & Kuehn, G. D.(1990). Identification of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenaseas a substrate for transglutaminase in Medicago sativa L. (alfalfa) Plant Physiology 92,88–96.

    Article  CAS  Google Scholar 

  • Milkowski A. L., & Sosnicki, A. A. (1999). Method for treating PSE meat with transglutaminase.U.S. Patent No. 5,928,689. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Miller, A. J., Strange, E. D., & Whiting, R. C. (1989). Improved tenderness of restructured beef steaksby a microbial collagenase derived from Vibrio B-30. Journal of Food Science, 54, 855–857.

    Article  CAS  Google Scholar 

  • Moodie, C. P. (2005, September 19) Enzymes in marinades. Oral seminar presented at the Prepared Foods 2005 R&D Applications Seminar. Retrieved November 8, 2007, from Prepared Foods WebSite: http://www.preparedfoods.com/CDA/HTML/c2b229fbe9d09010VgnVCM100000f932a8c0

  • Motoki, M., & Nio, N. (1983). Crosslinking between different food proteins by transglutaminase.Journal of Food Science, 48, 561–566.

    Article  CAS  Google Scholar 

  • Motoki, M., & Seguro, K. (1998). Transglutaminase and its use for food processing. Trends in Food Science and Technology, 9, 204–210.

    Article  CAS  Google Scholar 

  • Naveena, B. M., & Mendiratta, S. K. (2004). The tenderization of buffalo meat using gingerextract. Journal of Muscle Foods, 15, 235–244.

    Article  Google Scholar 

  • Neilsen, P. M. (1995). Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechnology., 9,119–156.

    Article  Google Scholar 

  • Payne, C. A. (2001, June). Meat restructuring using cold binding systems. Paper presented at the Annual Meeting of the Institute of Food Technologists, New Orleans, LA.

    Google Scholar 

  • Payne, T. (2000). Non-thermal gelation. In Proceedings of the 53rd Reciprocal Meat (pp. 25–26). Savoy, IL: American Meat Science Association.

    Google Scholar 

  • Qihea, C., Guoqinga, H., Yingchunb, J., & Hui, N. (2006). Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chemistry, 98, 624–629.

    Article  Google Scholar 

  • Ramírez, J., Uresti, R., Téllez, S., & Vázquez, M., (2002). Using salt and microbial transglutami-nase as binding agents in restructured fish products resembling hams. Journal of Food Science 67, 1778–1784.

    Article  Google Scholar 

  • Ramírez, J. A., Del Angel, A., Velásquez, G., & Vázquez, M., (2006). Production of low-salt restructured fish products from Mexican flounder (Cyclopsetta chittendeni) using microbial transglutaminase or whey protein concentrate as binders. .European Food Research and Technology, 223, 341–345.

    Article  Google Scholar 

  • Ramírez-Suarez, J. C., & Xiong, Y. L. (2003). Rheological properties of mixed muscle/nonmuscle protein emulsions treated with transglutaminase at two ionic strengths. Journal of Food Science and Technology, 38, 777–785.

    Article  Google Scholar 

  • Rao, M B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. D. (1998). Molecular and biotech-nological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635

    CAS  Google Scholar 

  • Rhodes, D. N., & Dransfield, E. (1973). Effect of preslaughter injections of papain on toughness in lamb muscles induced by rapid chilling. Journal of the Science of Food and Agriculture, 24, 1583–1588.

    Article  CAS  Google Scholar 

  • Robbins, B. H. (1930). The proteolytic enzyme in ficin, the anthelmintic principle of leche de higueron. Journal of Biological Chemistry, 87, 251–257.

    CAS  Google Scholar 

  • Ruiz-Carrascal, J., & Regenstein, J. (2002). Emulsion stability and water uptake ability of chicken breast muscle proteins as affected by microbial transglutaminase. Journal of Food Science, 67, 734–739.

    Article  CAS  Google Scholar 

  • Sakamoto, H., Kumazawa, Y., Kawajiri, H., & Motoki, M. (1995). ε-(γ-Glutamyl)lysine crosslink distribution in foods as determined by improved method. Journal of Food Science., 60, 416–419.

    Article  CAS  Google Scholar 

  • Sakamoto, H., Kumazawa, Y., & Motoki, M. (1994). Strength of protein gels prepared with micro-bial transglutaminase as related to reaction conditions. Journal of Food Science 59(4) 866–871

    Article  CAS  Google Scholar 

  • Sato, N., Ohtake, Y., Kohno, H., Abe, S., & Ohkubo. Y. (2003). Inhibitory and promotive effects of polyamines on transglutaminase-induced protein polymerization. .Protein and Peptide Letters., 10, 396–403.

    Article  CAS  Google Scholar 

  • Schwimmer, S. (1981). Source book of food enzymology. Westport, CT: AVI Publishing.

    Google Scholar 

  • Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi, S., & Motoki, M. (1995) Microbial trans-glutaminase and ε-(γ -glutamyl)lysine crosslink effects on elastic properties of kamaboko gel. Journal of Food Science, 60, 305–311.

    Article  CAS  Google Scholar 

  • Seki, N., Uno, H., Lee, N.H., Kimura, I., Toyoda, K., Fujita, T., et al. (1990). Transglutaminase activity in Alaska Pollock muscle and surimi, and its reaction with Myosin B. Nippon Suisan Gakkasishi 56, 125–132.

    CAS  Google Scholar 

  • Smith, J., & Hong-Shum, L. (2003). Part 5. Enzymes. In Food Additives Data Book. (pp. 389–462). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Soeda, T., Hondo, K., & Kuhara, C. (2000). Stabilized transglutaminase and enzyme preparation containing the same. U.S. Patent No. 6,030,821. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Suklim, K., Flick J. R., G. J., Marcy, J. E., Eigel, W. N., Haugh, C. G., & Granata, L. A. (2004). Effect of cold-set binders: Alginates and microbial transglutaminase on the physical properties of restructured scallops. Journal of Texture Studies, 35, 634–642.

    Article  Google Scholar 

  • Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technology and Biotechnology, 44, 211–220.

    CAS  Google Scholar 

  • Susa, Y., Nakagoshi, H., & Sakaguchi, S. (2004) Pickle solution including transglutaminase, method of making and method of using. U.S. Patent No. 6,770,310. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Susa, Y., & Numazawa, T. (2001). Process of injecting meat with a pickle solution. U.S. Patent No. 6,303,162.. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Thompson, E.H., Wolf, I. D., & Allen, C. E. (1973). Ginger rhizome: A new source of proteolytic enzyme. Journal of Food Science, 38, 652–655.

    Article  Google Scholar 

  • Tsuji, R. & Takahashi, M. (1989). Process for treating meat with raw soy sauce. U.S. Patent No. 4,851,241. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Tsuji, R. F., Hamano, M., Koshiyama, I., & Fukushima, D. (1987). Conditioning of meat with raw soy sauce and its proteinases: Their effects on the quality of beef. Journal of Food Science, 52, 1177–1179.

    Article  Google Scholar 

  • Tunick, M. H. (1988) A research note: Changes in the denaturation characteristics of collagen induced by bacterial collagenase preparations. Journal of Food Science, 53, 661–662.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture, Food Safety and Inspection Service. (2005) Food standards and labeling policy book. Retrieved October 20, 2007, from USDA-FSIS Web Site: http://www.fsis.usda.gov/OPPDE/larc/Policies/Labeling_Policy_Book_082005.pdf

  • United States Department of Agriculture, Food Safety and Inspection Service. (2007). Safe and suitable ingredients used in the production of meat and poultry products (FSIS Directive 7120.1, Amendment 13). Retrieved November 10, 2007, from USDA-FSIS Web Site: http://www.fsis.usda.gov/OPPDE/rdad/FSISDirectives/7120.1Amend13.pdf

  • United States Food and Drug Administration, Center for Food Safety and Applied Nutrition. (2007). Numerical listing of GRAS notices. Retrieved November 10, 2007, from http://www.cfsan.fda.gov/~rdb/opa-gras.html

  • von Seggern, D. D., Calkins, C. R., Johnson, D. D., Brickler, J. E., & Gwartney, B. L., (2005). Muscle profiling: Characterizing the muscles of the beef chuck and round Meat Science 71, 39–51.

    Article  Google Scholar 

  • Yokoyama, K., Nio, N., & Kikuchi,Y. (2004). Properties and applications of microbial trans-glutaminase.Applied Microbiological Biotechnology, 64, 447–454.

    Article  CAS  Google Scholar 

  • Zhu, Y., Rinzema, A., Tramper, J., & Bol, J. (1995). Microbial transglutaminase — a review of its production and application in food processing. Applied Microbiology and Biotechnology, 44, 277–282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Payne, C.T. (2009). Enzymes. In: Tarté, R. (eds) Ingredients in Meat Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71327-4_8

Download citation

Publish with us

Policies and ethics